Multistable dynamics and control of a new 4D memristive chaotic Sprott B system
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18450%2F22%3A50018987" target="_blank" >RIV/62690094:18450/22:50018987 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S0960077922000455?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0960077922000455?via%3Dihub</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.chaos.2022.111834" target="_blank" >10.1016/j.chaos.2022.111834</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Multistable dynamics and control of a new 4D memristive chaotic Sprott B system
Popis výsledku v původním jazyce
This work proposes and investigates the dynamic behavior of a new memristive chaotic Sprott B system. One of the interesting features of this system is that it has a bias term that can adjust the symmetry of the proposed model, inducing both homogeneous and heterogeneous behaviors. Indeed, the introduced memristive system can turn from rotational symmetry (RS) to rotational symmetry broken (RSB) system in the presence or the absence of this bias term. In the RS system (i.e., absence of the bias term), pairs of symmetric attractors are formed, and the scenario of attractor merging is observed. Coexisting symmetric attractors and bifurcations with up to four solutions are perfectly investigated. In the RSB system (i.e., the bias term is non-zero), many interesting phenomena are demonstrated, including asymmetric attractors, coexisting asymmetric bifurcations, various types of coexisting asymmetric solutions, and period-doubling transition to chaos. We perfectly demonstrate that the new asymmetric/symmetric memristive system exhibits the exciting phenomenon of partial amplitude control (PAC) and offset boosting. Also, we show how it is possible to control the amplitude and the offset of the chaotic signals generated for some technological exploitation. Finally, coexisting solutions (i.e., multistability) found in the novel memristive system are further controlled based on a linear augmentation (LA) scheme. Our numerical findings demonstrated the effectiveness of the control technic through interior crisis, reverse period-doubling scenario, and symmetry restoring crisis. The coupled memristive system remains stable with its unique survived periodic attractor for higher values of the coupling strength. © 2022
Název v anglickém jazyce
Multistable dynamics and control of a new 4D memristive chaotic Sprott B system
Popis výsledku anglicky
This work proposes and investigates the dynamic behavior of a new memristive chaotic Sprott B system. One of the interesting features of this system is that it has a bias term that can adjust the symmetry of the proposed model, inducing both homogeneous and heterogeneous behaviors. Indeed, the introduced memristive system can turn from rotational symmetry (RS) to rotational symmetry broken (RSB) system in the presence or the absence of this bias term. In the RS system (i.e., absence of the bias term), pairs of symmetric attractors are formed, and the scenario of attractor merging is observed. Coexisting symmetric attractors and bifurcations with up to four solutions are perfectly investigated. In the RSB system (i.e., the bias term is non-zero), many interesting phenomena are demonstrated, including asymmetric attractors, coexisting asymmetric bifurcations, various types of coexisting asymmetric solutions, and period-doubling transition to chaos. We perfectly demonstrate that the new asymmetric/symmetric memristive system exhibits the exciting phenomenon of partial amplitude control (PAC) and offset boosting. Also, we show how it is possible to control the amplitude and the offset of the chaotic signals generated for some technological exploitation. Finally, coexisting solutions (i.e., multistability) found in the novel memristive system are further controlled based on a linear augmentation (LA) scheme. Our numerical findings demonstrated the effectiveness of the control technic through interior crisis, reverse period-doubling scenario, and symmetry restoring crisis. The coupled memristive system remains stable with its unique survived periodic attractor for higher values of the coupling strength. © 2022
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10103 - Statistics and probability
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Chaos solitons and fractals
ISSN
0960-0779
e-ISSN
1873-2887
Svazek periodika
156
Číslo periodika v rámci svazku
March
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
16
Strana od-do
"Article number: 111834"
Kód UT WoS článku
000783070800003
EID výsledku v databázi Scopus
2-s2.0-85123908477