Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Multistable dynamics and control of a new 4D memristive chaotic Sprott B system

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18450%2F22%3A50018987" target="_blank" >RIV/62690094:18450/22:50018987 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://www.sciencedirect.com/science/article/pii/S0960077922000455?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0960077922000455?via%3Dihub</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.chaos.2022.111834" target="_blank" >10.1016/j.chaos.2022.111834</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Multistable dynamics and control of a new 4D memristive chaotic Sprott B system

  • Popis výsledku v původním jazyce

    This work proposes and investigates the dynamic behavior of a new memristive chaotic Sprott B system. One of the interesting features of this system is that it has a bias term that can adjust the symmetry of the proposed model, inducing both homogeneous and heterogeneous behaviors. Indeed, the introduced memristive system can turn from rotational symmetry (RS) to rotational symmetry broken (RSB) system in the presence or the absence of this bias term. In the RS system (i.e., absence of the bias term), pairs of symmetric attractors are formed, and the scenario of attractor merging is observed. Coexisting symmetric attractors and bifurcations with up to four solutions are perfectly investigated. In the RSB system (i.e., the bias term is non-zero), many interesting phenomena are demonstrated, including asymmetric attractors, coexisting asymmetric bifurcations, various types of coexisting asymmetric solutions, and period-doubling transition to chaos. We perfectly demonstrate that the new asymmetric/symmetric memristive system exhibits the exciting phenomenon of partial amplitude control (PAC) and offset boosting. Also, we show how it is possible to control the amplitude and the offset of the chaotic signals generated for some technological exploitation. Finally, coexisting solutions (i.e., multistability) found in the novel memristive system are further controlled based on a linear augmentation (LA) scheme. Our numerical findings demonstrated the effectiveness of the control technic through interior crisis, reverse period-doubling scenario, and symmetry restoring crisis. The coupled memristive system remains stable with its unique survived periodic attractor for higher values of the coupling strength. © 2022

  • Název v anglickém jazyce

    Multistable dynamics and control of a new 4D memristive chaotic Sprott B system

  • Popis výsledku anglicky

    This work proposes and investigates the dynamic behavior of a new memristive chaotic Sprott B system. One of the interesting features of this system is that it has a bias term that can adjust the symmetry of the proposed model, inducing both homogeneous and heterogeneous behaviors. Indeed, the introduced memristive system can turn from rotational symmetry (RS) to rotational symmetry broken (RSB) system in the presence or the absence of this bias term. In the RS system (i.e., absence of the bias term), pairs of symmetric attractors are formed, and the scenario of attractor merging is observed. Coexisting symmetric attractors and bifurcations with up to four solutions are perfectly investigated. In the RSB system (i.e., the bias term is non-zero), many interesting phenomena are demonstrated, including asymmetric attractors, coexisting asymmetric bifurcations, various types of coexisting asymmetric solutions, and period-doubling transition to chaos. We perfectly demonstrate that the new asymmetric/symmetric memristive system exhibits the exciting phenomenon of partial amplitude control (PAC) and offset boosting. Also, we show how it is possible to control the amplitude and the offset of the chaotic signals generated for some technological exploitation. Finally, coexisting solutions (i.e., multistability) found in the novel memristive system are further controlled based on a linear augmentation (LA) scheme. Our numerical findings demonstrated the effectiveness of the control technic through interior crisis, reverse period-doubling scenario, and symmetry restoring crisis. The coupled memristive system remains stable with its unique survived periodic attractor for higher values of the coupling strength. © 2022

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10103 - Statistics and probability

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2022

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Chaos solitons and fractals

  • ISSN

    0960-0779

  • e-ISSN

    1873-2887

  • Svazek periodika

    156

  • Číslo periodika v rámci svazku

    March

  • Stát vydavatele periodika

    GB - Spojené království Velké Británie a Severního Irska

  • Počet stran výsledku

    16

  • Strana od-do

    "Article number: 111834"

  • Kód UT WoS článku

    000783070800003

  • EID výsledku v databázi Scopus

    2-s2.0-85123908477