Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Evaluation of Wind Turbine Failure Modes Using the Developed SWARA-CoCoSo Methods Based on the Spherical Fuzzy Environment

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18450%2F22%3A50019352" target="_blank" >RIV/62690094:18450/22:50019352 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://ieeexplore.ieee.org/document/9858140" target="_blank" >https://ieeexplore.ieee.org/document/9858140</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/ACCESS.2022.3199359" target="_blank" >10.1109/ACCESS.2022.3199359</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Evaluation of Wind Turbine Failure Modes Using the Developed SWARA-CoCoSo Methods Based on the Spherical Fuzzy Environment

  • Popis výsledku v původním jazyce

    Accurately recognizing potential failures in the early stages of providing products or services can prevent the loss of investment and time and reduce the risk of safety hazards. Failure mode and effects analysis (FMEA) is a conventional approach for detecting and prioritizing the probable failures of a product&apos;s design or production process. Nevertheless, the traditional risk priority number (RPN) method has come under criticism for its deficiencies. This paper proposes a modified FMEA method based on fuzzy Multi-Criteria Decision Making (MCDM) techniques to cope with the weaknesses of the previous methodologies and improve the primary method. The concept of spherical fuzzy sets (SFS) is utilized to address the vagueness and impreciseness of the information that allows the experts to have more freedom in making decisions by including membership, non-membership, and hesitation of fuzzy sets. Initially, the procedure of assigning weights to the RPN criteria is implemented with SFS step-wise weight assessment ratio analysis (SWARA). Then, the failure modes are ranked by the SFS combined compromise solution (CoCoSo) method. The effectiveness and practicality of the suggested approach are illustrated through a case study on the Manjil wind farm in Iran. Results show that the suggested model is more reliable and realistic to be utilized in the prioritization of failures than the common FMEA method or other integrated MCDM approaches.

  • Název v anglickém jazyce

    Evaluation of Wind Turbine Failure Modes Using the Developed SWARA-CoCoSo Methods Based on the Spherical Fuzzy Environment

  • Popis výsledku anglicky

    Accurately recognizing potential failures in the early stages of providing products or services can prevent the loss of investment and time and reduce the risk of safety hazards. Failure mode and effects analysis (FMEA) is a conventional approach for detecting and prioritizing the probable failures of a product&apos;s design or production process. Nevertheless, the traditional risk priority number (RPN) method has come under criticism for its deficiencies. This paper proposes a modified FMEA method based on fuzzy Multi-Criteria Decision Making (MCDM) techniques to cope with the weaknesses of the previous methodologies and improve the primary method. The concept of spherical fuzzy sets (SFS) is utilized to address the vagueness and impreciseness of the information that allows the experts to have more freedom in making decisions by including membership, non-membership, and hesitation of fuzzy sets. Initially, the procedure of assigning weights to the RPN criteria is implemented with SFS step-wise weight assessment ratio analysis (SWARA). Then, the failure modes are ranked by the SFS combined compromise solution (CoCoSo) method. The effectiveness and practicality of the suggested approach are illustrated through a case study on the Manjil wind farm in Iran. Results show that the suggested model is more reliable and realistic to be utilized in the prioritization of failures than the common FMEA method or other integrated MCDM approaches.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2022

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    IEEE Access

  • ISSN

    2169-3536

  • e-ISSN

    2169-3536

  • Svazek periodika

    10

  • Číslo periodika v rámci svazku

    2022

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    15

  • Strana od-do

    86750-86764

  • Kód UT WoS článku

    000844067900001

  • EID výsledku v databázi Scopus

    2-s2.0-85136892231