Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Review of Tools for Semantics Extraction: Application in Tsunami Research Domain

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18450%2F22%3A50019476" target="_blank" >RIV/62690094:18450/22:50019476 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://www.mdpi.com/2078-2489/13/1/4" target="_blank" >https://www.mdpi.com/2078-2489/13/1/4</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.3390/info13010004" target="_blank" >10.3390/info13010004</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Review of Tools for Semantics Extraction: Application in Tsunami Research Domain

  • Popis výsledku v původním jazyce

    Immense numbers of textual documents are available in a digital form. Research activities are focused on methods of how to speed up their processing to avoid information overloading or to provide formal structures for the problem solving or decision making of intelligent agents. Ontology learning is one of the directions which contributes to all of these activities. The main aim of the ontology learning is to semi-automatically, or fully automatically, extract ontologies—formal structures able to express information or knowledge. The primary motivation behind this paper is to facilitate the processing of a large collection of papers focused on disaster management, especially on tsunami research, using the ontology learning. Various tools of ontology learning are mentioned in the literature at present. The main aim of the paper is to uncover these tools, i.e., to find out which of these tools can be practically used for ontology learning in the tsunami application domain. Specific criteria are predefined for their evaluation, with respect to the “Ontology learning layer cake”, which introduces the fundamental phases of ontology learning. ScienceDirect and Web of Science scientific databases are explored, and various solutions for semantics extraction are manually “mined” from the journal articles. ProgrammableWeb site is used for exploration of the tools, frameworks, or APIs applied for the same purpose. Statistics answer the question of which tools are mostly mentioned in these journal articles and on the website. These tools are then investigated more thoroughly, and conclusions about their usage are made with respect to the tsunami domain, for which the tools are tested. Results are not satisfactory because only a limited number of tools can be practically used for ontology learning at present.

  • Název v anglickém jazyce

    Review of Tools for Semantics Extraction: Application in Tsunami Research Domain

  • Popis výsledku anglicky

    Immense numbers of textual documents are available in a digital form. Research activities are focused on methods of how to speed up their processing to avoid information overloading or to provide formal structures for the problem solving or decision making of intelligent agents. Ontology learning is one of the directions which contributes to all of these activities. The main aim of the ontology learning is to semi-automatically, or fully automatically, extract ontologies—formal structures able to express information or knowledge. The primary motivation behind this paper is to facilitate the processing of a large collection of papers focused on disaster management, especially on tsunami research, using the ontology learning. Various tools of ontology learning are mentioned in the literature at present. The main aim of the paper is to uncover these tools, i.e., to find out which of these tools can be practically used for ontology learning in the tsunami application domain. Specific criteria are predefined for their evaluation, with respect to the “Ontology learning layer cake”, which introduces the fundamental phases of ontology learning. ScienceDirect and Web of Science scientific databases are explored, and various solutions for semantics extraction are manually “mined” from the journal articles. ProgrammableWeb site is used for exploration of the tools, frameworks, or APIs applied for the same purpose. Statistics answer the question of which tools are mostly mentioned in these journal articles and on the website. These tools are then investigated more thoroughly, and conclusions about their usage are made with respect to the tsunami domain, for which the tools are tested. Results are not satisfactory because only a limited number of tools can be practically used for ontology learning at present.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/LTC20020" target="_blank" >LTC20020: Consolidating research in tsunami hazard through the application of systems approach</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2022

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Information

  • ISSN

    2078-2489

  • e-ISSN

    2078-2489

  • Svazek periodika

    13

  • Číslo periodika v rámci svazku

    1

  • Stát vydavatele periodika

    CH - Švýcarská konfederace

  • Počet stran výsledku

    30

  • Strana od-do

    "Article Number: 4"

  • Kód UT WoS článku

    000747798000001

  • EID výsledku v databázi Scopus

    2-s2.0-85121791603