A Chaotic Circuit with Hidden Attractors and Extreme Event
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18450%2F22%3A50019493" target="_blank" >RIV/62690094:18450/22:50019493 - isvavai.cz</a>
Výsledek na webu
<a href="https://ieeexplore.ieee.org/document/9899443" target="_blank" >https://ieeexplore.ieee.org/document/9899443</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/ACCESS.2022.3208569" target="_blank" >10.1109/ACCESS.2022.3208569</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
A Chaotic Circuit with Hidden Attractors and Extreme Event
Popis výsledku v původním jazyce
Here, a chaotic quadratic oscillator is presented. The chaotic attractor of the oscillator is studied. It has a stable equilibrium point for most of the studied interval of its parameter. So, its chaotic attractor in that interval is hidden. Bifurcation diagrams of the oscillator are studied by changing two parameters. Bifurcations with two initiation methods are plotted for each parameter, and their results are investigated using their corresponding Lyapunov exponents. Studying the bifurcation diagrams reveals the multistability of the oscillator, which is also discussed using the basin of attractions. The existence of extreme events is examined for the chaotic dynamic. Implementing the circuit of the oscillator shows the feasibility of its chaotic dynamics. Author
Název v anglickém jazyce
A Chaotic Circuit with Hidden Attractors and Extreme Event
Popis výsledku anglicky
Here, a chaotic quadratic oscillator is presented. The chaotic attractor of the oscillator is studied. It has a stable equilibrium point for most of the studied interval of its parameter. So, its chaotic attractor in that interval is hidden. Bifurcation diagrams of the oscillator are studied by changing two parameters. Bifurcations with two initiation methods are plotted for each parameter, and their results are investigated using their corresponding Lyapunov exponents. Studying the bifurcation diagrams reveals the multistability of the oscillator, which is also discussed using the basin of attractions. The existence of extreme events is examined for the chaotic dynamic. Implementing the circuit of the oscillator shows the feasibility of its chaotic dynamics. Author
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
IEEE Access
ISSN
2169-3536
e-ISSN
2169-3536
Svazek periodika
10
Číslo periodika v rámci svazku
October
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
6
Strana od-do
105195-105200
Kód UT WoS článku
000866468500001
EID výsledku v databázi Scopus
2-s2.0-85139437275