Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Benchmarks for machine learning in depression discrimination using electroencephalography signals

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18450%2F23%3A50019480" target="_blank" >RIV/62690094:18450/23:50019480 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://link.springer.com/article/10.1007/s10489-022-04159-y" target="_blank" >https://link.springer.com/article/10.1007/s10489-022-04159-y</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/s10489-022-04159-y" target="_blank" >10.1007/s10489-022-04159-y</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Benchmarks for machine learning in depression discrimination using electroencephalography signals

  • Popis výsledku v původním jazyce

    Diagnosis of depression using electroencephalography (EEG) is an emerging field of study. When mental health facilities are unavailable, the use of EEG as an objective measure for depression management at an individual level becomes necessary. However, the limited availability of the openly accessible EEG datasets for depression and the non-standard task paradigm confine the scope of the research. This study contributes to the area by presenting a dataset that includes EEG data of subjects in the resting state and Patient Health Questionnaire (PHQ)-9 scores. These recordings incorporate EEG signals under both eyes open (EO) and eyes closed (EC) conditions. Moreover, this work documents high performance on various benchmark depression classification tasks with the help of traditional supervised machine learning algorithms, namely Decision Tree, Random Forest, k-Nearest Neighbours, Naive Bayes, Support Vector Machine, Multi-Layer Perceptron, and extreme gradient boosted trees (XGBoost) using the newly created dataset, where the class label of each patient is determined by the PHQ-9 score of the person. Then, feature selection is performed on twenty-three linear, nonlinear, time domain, and frequency domain features using ANOVA test and correlation analysis to identify statistically significant features, which are further fed into algorithms mentioned above separately for distinguishing healthy subjects from depressed. Among these classifiers, the performance of the XGBoost is found to be the best, with an accuracy of 87% for the EO state. The obtained results demonstrate that the proposed method outperforms fourteen existing approaches. The dataset presented in this work can be downloaded via https://drive.google.com/drive/folders/1ANUC-6hq02QG728ZWv2a1UWTLUbRrq y?usp=sharing.

  • Název v anglickém jazyce

    Benchmarks for machine learning in depression discrimination using electroencephalography signals

  • Popis výsledku anglicky

    Diagnosis of depression using electroencephalography (EEG) is an emerging field of study. When mental health facilities are unavailable, the use of EEG as an objective measure for depression management at an individual level becomes necessary. However, the limited availability of the openly accessible EEG datasets for depression and the non-standard task paradigm confine the scope of the research. This study contributes to the area by presenting a dataset that includes EEG data of subjects in the resting state and Patient Health Questionnaire (PHQ)-9 scores. These recordings incorporate EEG signals under both eyes open (EO) and eyes closed (EC) conditions. Moreover, this work documents high performance on various benchmark depression classification tasks with the help of traditional supervised machine learning algorithms, namely Decision Tree, Random Forest, k-Nearest Neighbours, Naive Bayes, Support Vector Machine, Multi-Layer Perceptron, and extreme gradient boosted trees (XGBoost) using the newly created dataset, where the class label of each patient is determined by the PHQ-9 score of the person. Then, feature selection is performed on twenty-three linear, nonlinear, time domain, and frequency domain features using ANOVA test and correlation analysis to identify statistically significant features, which are further fed into algorithms mentioned above separately for distinguishing healthy subjects from depressed. Among these classifiers, the performance of the XGBoost is found to be the best, with an accuracy of 87% for the EO state. The obtained results demonstrate that the proposed method outperforms fourteen existing approaches. The dataset presented in this work can be downloaded via https://drive.google.com/drive/folders/1ANUC-6hq02QG728ZWv2a1UWTLUbRrq y?usp=sharing.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

  • Návaznosti

    S - Specificky vyzkum na vysokych skolach<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2023

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Applied Intelligence

  • ISSN

    0924-669X

  • e-ISSN

    1573-7497

  • Svazek periodika

    53

  • Číslo periodika v rámci svazku

    10

  • Stát vydavatele periodika

    NL - Nizozemsko

  • Počet stran výsledku

    18

  • Strana od-do

    12666-12683

  • Kód UT WoS článku

    000862219400005

  • EID výsledku v databázi Scopus

    2-s2.0-85139215731