Benchmarks for machine learning in depression discrimination using electroencephalography signals
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18450%2F23%3A50019480" target="_blank" >RIV/62690094:18450/23:50019480 - isvavai.cz</a>
Výsledek na webu
<a href="https://link.springer.com/article/10.1007/s10489-022-04159-y" target="_blank" >https://link.springer.com/article/10.1007/s10489-022-04159-y</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s10489-022-04159-y" target="_blank" >10.1007/s10489-022-04159-y</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Benchmarks for machine learning in depression discrimination using electroencephalography signals
Popis výsledku v původním jazyce
Diagnosis of depression using electroencephalography (EEG) is an emerging field of study. When mental health facilities are unavailable, the use of EEG as an objective measure for depression management at an individual level becomes necessary. However, the limited availability of the openly accessible EEG datasets for depression and the non-standard task paradigm confine the scope of the research. This study contributes to the area by presenting a dataset that includes EEG data of subjects in the resting state and Patient Health Questionnaire (PHQ)-9 scores. These recordings incorporate EEG signals under both eyes open (EO) and eyes closed (EC) conditions. Moreover, this work documents high performance on various benchmark depression classification tasks with the help of traditional supervised machine learning algorithms, namely Decision Tree, Random Forest, k-Nearest Neighbours, Naive Bayes, Support Vector Machine, Multi-Layer Perceptron, and extreme gradient boosted trees (XGBoost) using the newly created dataset, where the class label of each patient is determined by the PHQ-9 score of the person. Then, feature selection is performed on twenty-three linear, nonlinear, time domain, and frequency domain features using ANOVA test and correlation analysis to identify statistically significant features, which are further fed into algorithms mentioned above separately for distinguishing healthy subjects from depressed. Among these classifiers, the performance of the XGBoost is found to be the best, with an accuracy of 87% for the EO state. The obtained results demonstrate that the proposed method outperforms fourteen existing approaches. The dataset presented in this work can be downloaded via https://drive.google.com/drive/folders/1ANUC-6hq02QG728ZWv2a1UWTLUbRrq y?usp=sharing.
Název v anglickém jazyce
Benchmarks for machine learning in depression discrimination using electroencephalography signals
Popis výsledku anglicky
Diagnosis of depression using electroencephalography (EEG) is an emerging field of study. When mental health facilities are unavailable, the use of EEG as an objective measure for depression management at an individual level becomes necessary. However, the limited availability of the openly accessible EEG datasets for depression and the non-standard task paradigm confine the scope of the research. This study contributes to the area by presenting a dataset that includes EEG data of subjects in the resting state and Patient Health Questionnaire (PHQ)-9 scores. These recordings incorporate EEG signals under both eyes open (EO) and eyes closed (EC) conditions. Moreover, this work documents high performance on various benchmark depression classification tasks with the help of traditional supervised machine learning algorithms, namely Decision Tree, Random Forest, k-Nearest Neighbours, Naive Bayes, Support Vector Machine, Multi-Layer Perceptron, and extreme gradient boosted trees (XGBoost) using the newly created dataset, where the class label of each patient is determined by the PHQ-9 score of the person. Then, feature selection is performed on twenty-three linear, nonlinear, time domain, and frequency domain features using ANOVA test and correlation analysis to identify statistically significant features, which are further fed into algorithms mentioned above separately for distinguishing healthy subjects from depressed. Among these classifiers, the performance of the XGBoost is found to be the best, with an accuracy of 87% for the EO state. The obtained results demonstrate that the proposed method outperforms fourteen existing approaches. The dataset presented in this work can be downloaded via https://drive.google.com/drive/folders/1ANUC-6hq02QG728ZWv2a1UWTLUbRrq y?usp=sharing.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Applied Intelligence
ISSN
0924-669X
e-ISSN
1573-7497
Svazek periodika
53
Číslo periodika v rámci svazku
10
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
18
Strana od-do
12666-12683
Kód UT WoS článku
000862219400005
EID výsledku v databázi Scopus
2-s2.0-85139215731