Intermolecular Covalent Interactions: Nature and Directionality
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18450%2F23%3A50020112" target="_blank" >RIV/62690094:18450/23:50020112 - isvavai.cz</a>
Výsledek na webu
<a href="https://chemistry-europe.onlinelibrary.wiley.com/doi/10.1002/chem.202203791" target="_blank" >https://chemistry-europe.onlinelibrary.wiley.com/doi/10.1002/chem.202203791</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1002/chem.202203791" target="_blank" >10.1002/chem.202203791</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Intermolecular Covalent Interactions: Nature and Directionality
Popis výsledku v původním jazyce
Quantum chemical methods were employed to analyze the nature and the origin of the directionality of pnictogen (PnB), chalcogen (ChB), and halogen bonds (XB) in archetypal FmZ⋅⋅⋅F− complexes (Z=Pn, Ch, X), using relativistic density functional theory (DFT) at ZORA-M06/QZ4P. Quantitative Kohn-Sham MO and energy decomposition analyses (EDA) show that all these intermolecular interactions have in common that covalence, that is, HOMO−LUMO interactions, provide a crucial contribution to the bond energy, besides electrostatic attraction. Strikingly, all these bonds are directional (i.e., F−Z⋅⋅⋅F− is approximately linear) despite, and not because of, the electrostatic interactions which, in fact, favor bending. This constitutes a breakdown of the σ-hole model. It was shown how the σ-hole model fails by neglecting both, the essential physics behind the electrostatic interaction and that behind the directionality of electron-rich intermolecular interactions. Our findings are general and extend to the neutral, weaker ClI⋅⋅⋅NH3, HClTe⋅⋅⋅NH3, and H2ClSb⋅⋅⋅NH3 complexes. © 2022 The Authors. Chemistry - A European Journal published by Wiley-VCH GmbH.
Název v anglickém jazyce
Intermolecular Covalent Interactions: Nature and Directionality
Popis výsledku anglicky
Quantum chemical methods were employed to analyze the nature and the origin of the directionality of pnictogen (PnB), chalcogen (ChB), and halogen bonds (XB) in archetypal FmZ⋅⋅⋅F− complexes (Z=Pn, Ch, X), using relativistic density functional theory (DFT) at ZORA-M06/QZ4P. Quantitative Kohn-Sham MO and energy decomposition analyses (EDA) show that all these intermolecular interactions have in common that covalence, that is, HOMO−LUMO interactions, provide a crucial contribution to the bond energy, besides electrostatic attraction. Strikingly, all these bonds are directional (i.e., F−Z⋅⋅⋅F− is approximately linear) despite, and not because of, the electrostatic interactions which, in fact, favor bending. This constitutes a breakdown of the σ-hole model. It was shown how the σ-hole model fails by neglecting both, the essential physics behind the electrostatic interaction and that behind the directionality of electron-rich intermolecular interactions. Our findings are general and extend to the neutral, weaker ClI⋅⋅⋅NH3, HClTe⋅⋅⋅NH3, and H2ClSb⋅⋅⋅NH3 complexes. © 2022 The Authors. Chemistry - A European Journal published by Wiley-VCH GmbH.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10406 - Analytical chemistry
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Chemistry - a European Journal
ISSN
0947-6539
e-ISSN
1521-3765
Svazek periodika
29
Číslo periodika v rámci svazku
14
Stát vydavatele periodika
DE - Spolková republika Německo
Počet stran výsledku
9
Strana od-do
"Article Numbere: e202203791"
Kód UT WoS článku
000921666000001
EID výsledku v databázi Scopus
2-s2.0-85147035317