Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Architecture-Oriented Agent-Based Simulations and Machine Learning Solution: The Case of Tsunami Emergency Analysis for Local Decision Makers

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18450%2F23%3A50020380" target="_blank" >RIV/62690094:18450/23:50020380 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://www.mdpi.com/2078-2489/14/3/172" target="_blank" >https://www.mdpi.com/2078-2489/14/3/172</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.3390/info14030172" target="_blank" >10.3390/info14030172</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Architecture-Oriented Agent-Based Simulations and Machine Learning Solution: The Case of Tsunami Emergency Analysis for Local Decision Makers

  • Popis výsledku v původním jazyce

    Tsunamis are a perilous natural phenomenon endangering growing coastal populations and tourists in many seaside resorts. Failures in responding to recent tsunami events stresses the importance of further research in building a robust tsunami warning system, especially in the &quot;last mile&quot; component. The lack of detail, unification and standardisation in information processing and decision support hampers wider implementation of reusable information technology solutions among local authorities and officials. In this paper, the architecture of a tsunami emergency solution is introduced. The aim of the research is to present a tsunami emergency solution for local authorities and officials responsible for preparing tsunami response and evacuation plans. The solution is based on a combination of machine learning techniques and agent-based modelling, enabling analysis of both real and simulated datasets. The solution is designed and developed based on the principles of enterprise architecture development. The data exploration follows the practices for data mining and big data analyses. The architecture of the solution is depicted using the standardised notation and includes components that can be exploited by responsible local authorities to test various tsunami impact scenarios and prepare plans for appropriate response measures.

  • Název v anglickém jazyce

    Architecture-Oriented Agent-Based Simulations and Machine Learning Solution: The Case of Tsunami Emergency Analysis for Local Decision Makers

  • Popis výsledku anglicky

    Tsunamis are a perilous natural phenomenon endangering growing coastal populations and tourists in many seaside resorts. Failures in responding to recent tsunami events stresses the importance of further research in building a robust tsunami warning system, especially in the &quot;last mile&quot; component. The lack of detail, unification and standardisation in information processing and decision support hampers wider implementation of reusable information technology solutions among local authorities and officials. In this paper, the architecture of a tsunami emergency solution is introduced. The aim of the research is to present a tsunami emergency solution for local authorities and officials responsible for preparing tsunami response and evacuation plans. The solution is based on a combination of machine learning techniques and agent-based modelling, enabling analysis of both real and simulated datasets. The solution is designed and developed based on the principles of enterprise architecture development. The data exploration follows the practices for data mining and big data analyses. The architecture of the solution is depicted using the standardised notation and includes components that can be exploited by responsible local authorities to test various tsunami impact scenarios and prepare plans for appropriate response measures.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/LTC20020" target="_blank" >LTC20020: Consolidating research in tsunami hazard through the application of systems approach</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2023

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    INFORMATION

  • ISSN

    2078-2489

  • e-ISSN

    2078-2489

  • Svazek periodika

    14

  • Číslo periodika v rámci svazku

    3

  • Stát vydavatele periodika

    CH - Švýcarská konfederace

  • Počet stran výsledku

    20

  • Strana od-do

    "Article Number: 172"

  • Kód UT WoS článku

    000959155000001

  • EID výsledku v databázi Scopus

    2-s2.0-85151097369