Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

DEEP LEARNING-BASED EDUCATION DECISION SUPPORT SYSTEM FOR STUDENT E-LEARNING PERFORMANCE PREDICTION

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18450%2F23%3A50020673" target="_blank" >RIV/62690094:18450/23:50020673 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://www.scpe.org/index.php/scpe/article/view/2188" target="_blank" >https://www.scpe.org/index.php/scpe/article/view/2188</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.12694/scpe.v24i3.2188" target="_blank" >10.12694/scpe.v24i3.2188</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    DEEP LEARNING-BASED EDUCATION DECISION SUPPORT SYSTEM FOR STUDENT E-LEARNING PERFORMANCE PREDICTION

  • Popis výsledku v původním jazyce

    Information Technology (IT) and its advancements change the education environment. Conventional classroom education has been transformed into a modernized form. Education field decision-makers are always searching for new technologies that provide fast solutions to support Education Decision Support Systems (EDSS). There is a significant need for an effective decision support system to utilize student data which helps the university in making the right decisions. The Electronic learning system (e-learning) provides a live forum for faculties and students to connect with learning portals and virtually execute educational activities. Even though these modern approaches support the education system, active student participation still needs to be improved. Moreover, accurately measuring student performance using collected attributes remains difficult for parents and teachers. Therefore, this paper seeks to understand and predict student performance using effective data processing and a deep learning-based decision model. The implementation of EDSS starts with data preprocessing, Extraction-Transformation-Load (ETL), a data mart area to store the extracted data with Online Analytical Processing (OLAP) processing, and decision-making using Deep Graph Convolutional Neural Network (DGCNN). The statistical evaluation is based on the student dataset from the Kaggle repository. The analyzed results depict that the proposed EDSS model on an independent data mart with efficient decision support and OLAP provides a better platform to make academic decisions and help educators to make necessary decisions notified to the students. © 2023 SCPE.

  • Název v anglickém jazyce

    DEEP LEARNING-BASED EDUCATION DECISION SUPPORT SYSTEM FOR STUDENT E-LEARNING PERFORMANCE PREDICTION

  • Popis výsledku anglicky

    Information Technology (IT) and its advancements change the education environment. Conventional classroom education has been transformed into a modernized form. Education field decision-makers are always searching for new technologies that provide fast solutions to support Education Decision Support Systems (EDSS). There is a significant need for an effective decision support system to utilize student data which helps the university in making the right decisions. The Electronic learning system (e-learning) provides a live forum for faculties and students to connect with learning portals and virtually execute educational activities. Even though these modern approaches support the education system, active student participation still needs to be improved. Moreover, accurately measuring student performance using collected attributes remains difficult for parents and teachers. Therefore, this paper seeks to understand and predict student performance using effective data processing and a deep learning-based decision model. The implementation of EDSS starts with data preprocessing, Extraction-Transformation-Load (ETL), a data mart area to store the extracted data with Online Analytical Processing (OLAP) processing, and decision-making using Deep Graph Convolutional Neural Network (DGCNN). The statistical evaluation is based on the student dataset from the Kaggle repository. The analyzed results depict that the proposed EDSS model on an independent data mart with efficient decision support and OLAP provides a better platform to make academic decisions and help educators to make necessary decisions notified to the students. © 2023 SCPE.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/EF19_073%2F0016949" target="_blank" >EF19_073/0016949: Rozvoj interní grantové agentury Univerzity Hradec Králové</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2023

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Scalable Computing

  • ISSN

    1895-1767

  • e-ISSN

    1895-1767

  • Svazek periodika

    24

  • Číslo periodika v rámci svazku

    3

  • Stát vydavatele periodika

    RO - Rumunsko

  • Počet stran výsledku

    12

  • Strana od-do

    327-338

  • Kód UT WoS článku

    001077849000009

  • EID výsledku v databázi Scopus

    2-s2.0-85171265435