Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

A Survey on COVID-19 Lesion Segmentation Techniques from Chest CT Images

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18450%2F23%3A50020690" target="_blank" >RIV/62690094:18450/23:50020690 - isvavai.cz</a>

  • Výsledek na webu

    <a href="http://dx.doi.org/10.1007/978-981-99-2680-0_50" target="_blank" >http://dx.doi.org/10.1007/978-981-99-2680-0_50</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-981-99-2680-0_50" target="_blank" >10.1007/978-981-99-2680-0_50</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    A Survey on COVID-19 Lesion Segmentation Techniques from Chest CT Images

  • Popis výsledku v původním jazyce

    The COVID-19 pandemic had a catastrophic effect on almost every country, with a reported 6 million deaths by 2022. It is caused by an RNA virus named severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). To date, there have been five variants of SARS-CoV-2, namely alpha, beta, gamma, delta, and omicron. Each of these variants can potentially infect more and more people and are highly contagious. COVID-19 affects almost all body organs, but its pulmonary involvement is the greatest. Most of the reported deaths have been due to pneumonia. CT-Scan is crucial in understanding the patient’s lung condition during and post-COVID. Radiologists found that lung lesions like ground glass opacity (GGO), consolidations, etc., indicate pneumonia. By analyzing the spread of these lesions in the chest CT image of COVID-19-infected patients, physicians could determine the lung condition and prescribe suitable treatments. The traditional methods of analyzing lesions are prone to manual error and inter-observer variations. Developing an automated system for lesion segmentation is essential for disease diagnosis and prognosis. This study presents an in-depth survey of various lesion segmentation techniques. All the state-of-the-art methods covered in this review paper have been described in detail, including their methodology, dataset used, and performance metrics. This survey will help accelerate the research in COVID-19 lesion segmentation since it will provide detailed insight into the pros and cons of every paper included in this study. © 2023, The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

  • Název v anglickém jazyce

    A Survey on COVID-19 Lesion Segmentation Techniques from Chest CT Images

  • Popis výsledku anglicky

    The COVID-19 pandemic had a catastrophic effect on almost every country, with a reported 6 million deaths by 2022. It is caused by an RNA virus named severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). To date, there have been five variants of SARS-CoV-2, namely alpha, beta, gamma, delta, and omicron. Each of these variants can potentially infect more and more people and are highly contagious. COVID-19 affects almost all body organs, but its pulmonary involvement is the greatest. Most of the reported deaths have been due to pneumonia. CT-Scan is crucial in understanding the patient’s lung condition during and post-COVID. Radiologists found that lung lesions like ground glass opacity (GGO), consolidations, etc., indicate pneumonia. By analyzing the spread of these lesions in the chest CT image of COVID-19-infected patients, physicians could determine the lung condition and prescribe suitable treatments. The traditional methods of analyzing lesions are prone to manual error and inter-observer variations. Developing an automated system for lesion segmentation is essential for disease diagnosis and prognosis. This study presents an in-depth survey of various lesion segmentation techniques. All the state-of-the-art methods covered in this review paper have been described in detail, including their methodology, dataset used, and performance metrics. This survey will help accelerate the research in COVID-19 lesion segmentation since it will provide detailed insight into the pros and cons of every paper included in this study. © 2023, The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

  • Návaznosti

    S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2023

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    Lecture Notes in Networks and Systems

  • ISBN

    978-981-9926-79-4

  • ISSN

    2367-3370

  • e-ISSN

  • Počet stran výsledku

    8

  • Strana od-do

    567-574

  • Název nakladatele

    Springer Science and Business Media Deutschland GmbH

  • Místo vydání

    Singapur

  • Místo konání akce

    Ropar

  • Datum konání akce

    19. 12. 2022

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku