Acoustic signal-based indigenous real-time rainfall monitoring system for sustainable environment
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18450%2F23%3A50020739" target="_blank" >RIV/62690094:18450/23:50020739 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S2213138823003910?pes=vor" target="_blank" >https://www.sciencedirect.com/science/article/pii/S2213138823003910?pes=vor</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.seta.2023.103398" target="_blank" >10.1016/j.seta.2023.103398</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Acoustic signal-based indigenous real-time rainfall monitoring system for sustainable environment
Popis výsledku v původním jazyce
The rainfall weather station employs a tipping bucket rain gauge, which serves as a specialized instrument for the meticulous assessment and documentation of various rainwater parameters. The implementation of a tipping bucket rain gauge for rainfall monitoring bears significant implications for both societal productivity as well as improvement of human life. A noteworthy example can be the constructive influence of rainwater over the sustainable agricultural irrigation practices, wherein the precise monitoring of rainfall through a tipping bucket rain gauge enables the formulation of tedious irrigation strategies. The rainfall monitoring if often handle using rain gauge which majorly faces two challenges named as mechanical devices failure and high installation and maintenance cost. Considering the challenges, we propose the fully automated rain gauge (RG) based on the principle of sound and its properties for rainfall monitoring. The working prototype is part of our work whose primary task is to collect the rainfall acoustic value and store it in the cloud. Our mechanism is to use the acoustic property of rain data to categorize rainfall intensity. We perform blind signal separation on the received signal (acoustic signal recorded with the help of microphone sensor) and feed the separated signal to a recurrent convolution neural network (RCNN). The source separation of the collected acoustic signals is primarily being done using independent component analysis and principal components analysis. The proposed solution can be able to make the classification of rain intensity with more than 80% accuracy. In addition to this, the developed method provides the sustainable solution to the challenges with the low-cost and application-specific acceptable threshold criteria and supplement rain measurement techniques. © 2023 Elsevier Ltd
Název v anglickém jazyce
Acoustic signal-based indigenous real-time rainfall monitoring system for sustainable environment
Popis výsledku anglicky
The rainfall weather station employs a tipping bucket rain gauge, which serves as a specialized instrument for the meticulous assessment and documentation of various rainwater parameters. The implementation of a tipping bucket rain gauge for rainfall monitoring bears significant implications for both societal productivity as well as improvement of human life. A noteworthy example can be the constructive influence of rainwater over the sustainable agricultural irrigation practices, wherein the precise monitoring of rainfall through a tipping bucket rain gauge enables the formulation of tedious irrigation strategies. The rainfall monitoring if often handle using rain gauge which majorly faces two challenges named as mechanical devices failure and high installation and maintenance cost. Considering the challenges, we propose the fully automated rain gauge (RG) based on the principle of sound and its properties for rainfall monitoring. The working prototype is part of our work whose primary task is to collect the rainfall acoustic value and store it in the cloud. Our mechanism is to use the acoustic property of rain data to categorize rainfall intensity. We perform blind signal separation on the received signal (acoustic signal recorded with the help of microphone sensor) and feed the separated signal to a recurrent convolution neural network (RCNN). The source separation of the collected acoustic signals is primarily being done using independent component analysis and principal components analysis. The proposed solution can be able to make the classification of rain intensity with more than 80% accuracy. In addition to this, the developed method provides the sustainable solution to the challenges with the low-cost and application-specific acceptable threshold criteria and supplement rain measurement techniques. © 2023 Elsevier Ltd
Klasifikace
Druh
J<sub>SC</sub> - Článek v periodiku v databázi SCOPUS
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Sustainable Energy Technologies and Assessments
ISSN
2213-1388
e-ISSN
2213-1396
Svazek periodika
60
Číslo periodika v rámci svazku
December
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
11
Strana od-do
"Article number: 103398"
Kód UT WoS článku
—
EID výsledku v databázi Scopus
2-s2.0-85169976794