A Two-Nearest Wireless Access Point-Based Fingerprint Clustering Algorithm for Improved Indoor Wireless Localization
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18450%2F23%3A50020752" target="_blank" >RIV/62690094:18450/23:50020752 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.ijournalse.org/index.php/ESJ/article/view/1854" target="_blank" >https://www.ijournalse.org/index.php/ESJ/article/view/1854</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.28991/ESJ-2023-07-05-019" target="_blank" >10.28991/ESJ-2023-07-05-019</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
A Two-Nearest Wireless Access Point-Based Fingerprint Clustering Algorithm for Improved Indoor Wireless Localization
Popis výsledku v původním jazyce
Fingerprint database clustering is one of the methods used to reduce localization time and improve localization accuracy in a fingerprint-based localization system. However, optimal selection of initial hyperparameters, higher computation complexity, and interpretation difficulty are among the performance-limiting factors of these clustering algorithms. This paper aims to improve localization time and accuracy by proposing a clustering algorithm that is extremely efficient and accurate at clustering fingerprint databases without requiring the selection of optimal initial hyperparameters, is computationally light, and is easily interpreted. The two closest wireless access points (APs) to the reference location where the fingerprint is generated, as well as the labels of the two APs in vector form, are used by the proposed algorithm to cluster fingerprints. The simulation result shows that the proposed clustering algorithm has a localization time that is at least 45% faster and a localization accuracy that is at least 25% higher than the k-means, fuzzy c-means, and lightweight maximum received signal strength clustering algorithms. The findings of this paper further demonstrate the real-time applicability of the proposed clustering algorithm in the context of indoor wireless localization as low localization time and higher localization accuracy are the main objectives of any localization system.
Název v anglickém jazyce
A Two-Nearest Wireless Access Point-Based Fingerprint Clustering Algorithm for Improved Indoor Wireless Localization
Popis výsledku anglicky
Fingerprint database clustering is one of the methods used to reduce localization time and improve localization accuracy in a fingerprint-based localization system. However, optimal selection of initial hyperparameters, higher computation complexity, and interpretation difficulty are among the performance-limiting factors of these clustering algorithms. This paper aims to improve localization time and accuracy by proposing a clustering algorithm that is extremely efficient and accurate at clustering fingerprint databases without requiring the selection of optimal initial hyperparameters, is computationally light, and is easily interpreted. The two closest wireless access points (APs) to the reference location where the fingerprint is generated, as well as the labels of the two APs in vector form, are used by the proposed algorithm to cluster fingerprints. The simulation result shows that the proposed clustering algorithm has a localization time that is at least 45% faster and a localization accuracy that is at least 25% higher than the k-means, fuzzy c-means, and lightweight maximum received signal strength clustering algorithms. The findings of this paper further demonstrate the real-time applicability of the proposed clustering algorithm in the context of indoor wireless localization as low localization time and higher localization accuracy are the main objectives of any localization system.
Klasifikace
Druh
J<sub>SC</sub> - Článek v periodiku v databázi SCOPUS
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Emerging Science Journal
ISSN
2610-9182
e-ISSN
2610-9182
Svazek periodika
7
Číslo periodika v rámci svazku
5
Stát vydavatele periodika
IT - Italská republika
Počet stran výsledku
9
Strana od-do
1762-1770
Kód UT WoS článku
—
EID výsledku v databázi Scopus
2-s2.0-85174955700