Qualitative Survey on Artificial Intelligence Integrated Blockchain Approach for 6G and Beyond
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18450%2F23%3A50020767" target="_blank" >RIV/62690094:18450/23:50020767 - isvavai.cz</a>
Výsledek na webu
<a href="https://ieeexplore.ieee.org/document/10262312" target="_blank" >https://ieeexplore.ieee.org/document/10262312</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/ACCESS.2023.3319083" target="_blank" >10.1109/ACCESS.2023.3319083</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Qualitative Survey on Artificial Intelligence Integrated Blockchain Approach for 6G and Beyond
Popis výsledku v původním jazyce
Utilizing the 0.1 to 10 THz spectrum in the next-generation wireless communication networks holds potential for futuristic applications. However, managing resources to accommodate numerous devices raises privacy and security concerns. Further, technology proliferation entwines devices, infrastructure complexity, and resources. Indeed, the transition from 5G (fifth-generation) to 6G (sixth-generation) signifies a progression towards high-speed data rates, minimal latency, and seamless integration of artificial intelligence, enabling ground-breaking applications and services. However, it complicates network management, privacy, resource allocation, and data processing. Notably, integrating Blockchain Technology (BCT) and Machine Learning (ML) is a promising solution, enhancing security, decentralization, trust in ML decisions, and efficient data sharing. This survey thoroughly reviews the integrated ML and BCT, showcasing their collaborative enhancement of network security, decentralization, trust in ML decisions, immutability, and efficient model sharing. Furthermore, we also delve into various distinctive topics, such as BCT-enabled spectrum refarming, rate splitting multiple access, 6G radar-based communication, reconfigurable intelligent surfaces, visible light communication, and integrated sensing and communication. Moreover, it also explores the integration of ML and BCT in novel 6G communication technologies, including molecular, holographic, and semantic communication. Finally, critical open issues, challenges, solutions, and futuristic scope are identified for forthcoming researchers.
Název v anglickém jazyce
Qualitative Survey on Artificial Intelligence Integrated Blockchain Approach for 6G and Beyond
Popis výsledku anglicky
Utilizing the 0.1 to 10 THz spectrum in the next-generation wireless communication networks holds potential for futuristic applications. However, managing resources to accommodate numerous devices raises privacy and security concerns. Further, technology proliferation entwines devices, infrastructure complexity, and resources. Indeed, the transition from 5G (fifth-generation) to 6G (sixth-generation) signifies a progression towards high-speed data rates, minimal latency, and seamless integration of artificial intelligence, enabling ground-breaking applications and services. However, it complicates network management, privacy, resource allocation, and data processing. Notably, integrating Blockchain Technology (BCT) and Machine Learning (ML) is a promising solution, enhancing security, decentralization, trust in ML decisions, and efficient data sharing. This survey thoroughly reviews the integrated ML and BCT, showcasing their collaborative enhancement of network security, decentralization, trust in ML decisions, immutability, and efficient model sharing. Furthermore, we also delve into various distinctive topics, such as BCT-enabled spectrum refarming, rate splitting multiple access, 6G radar-based communication, reconfigurable intelligent surfaces, visible light communication, and integrated sensing and communication. Moreover, it also explores the integration of ML and BCT in novel 6G communication technologies, including molecular, holographic, and semantic communication. Finally, critical open issues, challenges, solutions, and futuristic scope are identified for forthcoming researchers.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
IEEE Access
ISSN
2169-3536
e-ISSN
2169-3536
Svazek periodika
11
Číslo periodika v rámci svazku
October
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
47
Strana od-do
105935-105981
Kód UT WoS článku
001081631300001
EID výsledku v databázi Scopus
2-s2.0-85173059063