Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Machine Learning Algorithm for Malware Detection: Taxonomy, Current Challenges, and Future Directions

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18450%2F23%3A50021179" target="_blank" >RIV/62690094:18450/23:50021179 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://ieeexplore.ieee.org/document/10068497" target="_blank" >https://ieeexplore.ieee.org/document/10068497</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/ACCESS.2023.3256979" target="_blank" >10.1109/ACCESS.2023.3256979</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Machine Learning Algorithm for Malware Detection: Taxonomy, Current Challenges, and Future Directions

  • Popis výsledku v původním jazyce

    Malware has emerged as a cyber security threat that continuously changes to target computer systems, smart devices, and extensive networks with the development of information technologies. As a result, malware detection has always been a major worry and a difficult issue, owing to shortcomings in performance accuracy, analysis type, and malware detection approaches that fail to identify unexpected malware attacks. This paper seeks to conduct a thorough systematic literature review (SLR) and offer a taxonomy of machine learning methods for malware detection that considers these problems by analyzing 77 chosen research works related to malware detection using machine learning algorithm. The research investigates malware and machine learning in the context of cybersecurity, including malware detection taxonomy and machine learning algorithm classification into numerous categories. Furthermore, the taxonomy was used to evaluate the most recent machine learning algorithm and analysis. The paper also examines the obstacles and associated concerns encountered in malware detection and potential remedies. Finally, to address the related issues that would motivate researchers in their future work, an empirical study was utilized to assess the performance of several machine learning algorithms.

  • Název v anglickém jazyce

    Machine Learning Algorithm for Malware Detection: Taxonomy, Current Challenges, and Future Directions

  • Popis výsledku anglicky

    Malware has emerged as a cyber security threat that continuously changes to target computer systems, smart devices, and extensive networks with the development of information technologies. As a result, malware detection has always been a major worry and a difficult issue, owing to shortcomings in performance accuracy, analysis type, and malware detection approaches that fail to identify unexpected malware attacks. This paper seeks to conduct a thorough systematic literature review (SLR) and offer a taxonomy of machine learning methods for malware detection that considers these problems by analyzing 77 chosen research works related to malware detection using machine learning algorithm. The research investigates malware and machine learning in the context of cybersecurity, including malware detection taxonomy and machine learning algorithm classification into numerous categories. Furthermore, the taxonomy was used to evaluate the most recent machine learning algorithm and analysis. The paper also examines the obstacles and associated concerns encountered in malware detection and potential remedies. Finally, to address the related issues that would motivate researchers in their future work, an empirical study was utilized to assess the performance of several machine learning algorithms.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2023

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    IEEE Access

  • ISSN

    2169-3536

  • e-ISSN

    2169-3536

  • Svazek periodika

    11

  • Číslo periodika v rámci svazku

    March

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    45

  • Strana od-do

    141045-141089

  • Kód UT WoS článku

    001130213200001

  • EID výsledku v databázi Scopus

    2-s2.0-85151320871