Machine Learning Algorithm for Malware Detection: Taxonomy, Current Challenges, and Future Directions
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18450%2F23%3A50021179" target="_blank" >RIV/62690094:18450/23:50021179 - isvavai.cz</a>
Výsledek na webu
<a href="https://ieeexplore.ieee.org/document/10068497" target="_blank" >https://ieeexplore.ieee.org/document/10068497</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/ACCESS.2023.3256979" target="_blank" >10.1109/ACCESS.2023.3256979</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Machine Learning Algorithm for Malware Detection: Taxonomy, Current Challenges, and Future Directions
Popis výsledku v původním jazyce
Malware has emerged as a cyber security threat that continuously changes to target computer systems, smart devices, and extensive networks with the development of information technologies. As a result, malware detection has always been a major worry and a difficult issue, owing to shortcomings in performance accuracy, analysis type, and malware detection approaches that fail to identify unexpected malware attacks. This paper seeks to conduct a thorough systematic literature review (SLR) and offer a taxonomy of machine learning methods for malware detection that considers these problems by analyzing 77 chosen research works related to malware detection using machine learning algorithm. The research investigates malware and machine learning in the context of cybersecurity, including malware detection taxonomy and machine learning algorithm classification into numerous categories. Furthermore, the taxonomy was used to evaluate the most recent machine learning algorithm and analysis. The paper also examines the obstacles and associated concerns encountered in malware detection and potential remedies. Finally, to address the related issues that would motivate researchers in their future work, an empirical study was utilized to assess the performance of several machine learning algorithms.
Název v anglickém jazyce
Machine Learning Algorithm for Malware Detection: Taxonomy, Current Challenges, and Future Directions
Popis výsledku anglicky
Malware has emerged as a cyber security threat that continuously changes to target computer systems, smart devices, and extensive networks with the development of information technologies. As a result, malware detection has always been a major worry and a difficult issue, owing to shortcomings in performance accuracy, analysis type, and malware detection approaches that fail to identify unexpected malware attacks. This paper seeks to conduct a thorough systematic literature review (SLR) and offer a taxonomy of machine learning methods for malware detection that considers these problems by analyzing 77 chosen research works related to malware detection using machine learning algorithm. The research investigates malware and machine learning in the context of cybersecurity, including malware detection taxonomy and machine learning algorithm classification into numerous categories. Furthermore, the taxonomy was used to evaluate the most recent machine learning algorithm and analysis. The paper also examines the obstacles and associated concerns encountered in malware detection and potential remedies. Finally, to address the related issues that would motivate researchers in their future work, an empirical study was utilized to assess the performance of several machine learning algorithms.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
IEEE Access
ISSN
2169-3536
e-ISSN
2169-3536
Svazek periodika
11
Číslo periodika v rámci svazku
March
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
45
Strana od-do
141045-141089
Kód UT WoS článku
001130213200001
EID výsledku v databázi Scopus
2-s2.0-85151320871