Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Maximizing photovoltaic system power output with a master-slave strategy for parallel inverters

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18450%2F24%3A50021058" target="_blank" >RIV/62690094:18450/24:50021058 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://www.sciencedirect.com/science/article/pii/S2352484723016128?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/pii/S2352484723016128?via%3Dihub</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.egyr.2023.12.020" target="_blank" >10.1016/j.egyr.2023.12.020</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Maximizing photovoltaic system power output with a master-slave strategy for parallel inverters

  • Popis výsledku v původním jazyce

    Parallel inverters are commonly used for connecting photovoltaic (PV) and other renewable energy sources to Microgrids (MGs). One of the greatest challenges in MG operation is maximizing the PV system&apos;s performance while also enhancing the MG&apos;s reliability and efficiency. The PV inverters waste power if the shared load power is less than their maximum output power. When shared load power surpasses the PV inverter&apos;s maximum output power, the system may become unstable since PV sources are intermittent. This study proposes a master-slave control system for controlling parallel inverters connected to a PV system. The master inverter is connected to Energy Storage Devices (ESDs) and is responsible for maintaining stable voltage on the load bus. The PV units are connected via slave inverters and are managed using a dual-loop Proportional Integrator Derivative (PID) control approach, with the outer loop maximizing solar panel output. The system is built on a Direct-Quadrature-Zero (d-q-0) inverter architecture, and the controller guarantees that all inverter currents remain in phase to reduce circulating current and enhance overall system efficiency. The simulation model evaluates a system comprising three inverters, with the master inverter powered by ESDs. The PV Units power the other two Slave Inverters. The system is evaluated using four case studies featuring various load and radiation change scenarios. The results demonstrate that the system is highly reliable and operationally efficient, with the absence of circulating currents among the inverters. Moreover, the system is capable of precisely monitoring the MPPs of PV modules with 100% efficiency and a minimal 0.002% fluctuation, while also responding to changes in under 50 ms. © 2023 The Authors

  • Název v anglickém jazyce

    Maximizing photovoltaic system power output with a master-slave strategy for parallel inverters

  • Popis výsledku anglicky

    Parallel inverters are commonly used for connecting photovoltaic (PV) and other renewable energy sources to Microgrids (MGs). One of the greatest challenges in MG operation is maximizing the PV system&apos;s performance while also enhancing the MG&apos;s reliability and efficiency. The PV inverters waste power if the shared load power is less than their maximum output power. When shared load power surpasses the PV inverter&apos;s maximum output power, the system may become unstable since PV sources are intermittent. This study proposes a master-slave control system for controlling parallel inverters connected to a PV system. The master inverter is connected to Energy Storage Devices (ESDs) and is responsible for maintaining stable voltage on the load bus. The PV units are connected via slave inverters and are managed using a dual-loop Proportional Integrator Derivative (PID) control approach, with the outer loop maximizing solar panel output. The system is built on a Direct-Quadrature-Zero (d-q-0) inverter architecture, and the controller guarantees that all inverter currents remain in phase to reduce circulating current and enhance overall system efficiency. The simulation model evaluates a system comprising three inverters, with the master inverter powered by ESDs. The PV Units power the other two Slave Inverters. The system is evaluated using four case studies featuring various load and radiation change scenarios. The results demonstrate that the system is highly reliable and operationally efficient, with the absence of circulating currents among the inverters. Moreover, the system is capable of precisely monitoring the MPPs of PV modules with 100% efficiency and a minimal 0.002% fluctuation, while also responding to changes in under 50 ms. © 2023 The Authors

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    20704 - Energy and fuels

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2024

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Energy Reports

  • ISSN

    2352-4847

  • e-ISSN

    2352-4847

  • Svazek periodika

    11

  • Číslo periodika v rámci svazku

    June

  • Stát vydavatele periodika

    NL - Nizozemsko

  • Počet stran výsledku

    13

  • Strana od-do

    567-579

  • Kód UT WoS článku

    001136320100001

  • EID výsledku v databázi Scopus

    2-s2.0-85180012794