CervixNet: A Reward-Based Weighted Ensemble Framework for Cervical Cancer Classification
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18450%2F24%3A50021552" target="_blank" >RIV/62690094:18450/24:50021552 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1007/978-981-97-2611-0_20" target="_blank" >http://dx.doi.org/10.1007/978-981-97-2611-0_20</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-981-97-2611-0_20" target="_blank" >10.1007/978-981-97-2611-0_20</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
CervixNet: A Reward-Based Weighted Ensemble Framework for Cervical Cancer Classification
Popis výsledku v původním jazyce
Cervical cancer is one of the most common causes of death among women worldwide. However, this fatal disease can be treated, and the mortality rate can be decreased if detected at an early stage. The Papanicolaou test is the gold standard for screening cervical cancer patients. However, the process of manual inspection is tedious and subject to manual errors. Thus, computer-based automatic screening is considered a viable alternative. To this end, in the present work, we have developed a novel system for classifying cervical cancer images as either normal or malignant. We have used the Herlev dataset in this study, which is the standard Pap smear image benchmark dataset. The proposed framework uses multiple base deep learning frameworks, namely Vision Transformer, Xception, VGG-19, VGG-16, and ResNet-101, for classification. Further, we have introduced a novel reward-based weighing technique to decide the weights of individual classifiers, which are, in turn, used to make decisions about the final class label of an input image using the weighted average technique. The proposed framework achieves an overall accuracy, precision, recall, F1-score, and AUC of 96%, 94%, 92%, 93%, and 94%, respectively, for the binary classification task that is normal vs. malignant. An elaborate study of the performance achieved by our proposed framework on the Herlev dataset shows it to be both robust and effective for the Pap smear image classification task.
Název v anglickém jazyce
CervixNet: A Reward-Based Weighted Ensemble Framework for Cervical Cancer Classification
Popis výsledku anglicky
Cervical cancer is one of the most common causes of death among women worldwide. However, this fatal disease can be treated, and the mortality rate can be decreased if detected at an early stage. The Papanicolaou test is the gold standard for screening cervical cancer patients. However, the process of manual inspection is tedious and subject to manual errors. Thus, computer-based automatic screening is considered a viable alternative. To this end, in the present work, we have developed a novel system for classifying cervical cancer images as either normal or malignant. We have used the Herlev dataset in this study, which is the standard Pap smear image benchmark dataset. The proposed framework uses multiple base deep learning frameworks, namely Vision Transformer, Xception, VGG-19, VGG-16, and ResNet-101, for classification. Further, we have introduced a novel reward-based weighing technique to decide the weights of individual classifiers, which are, in turn, used to make decisions about the final class label of an input image using the weighted average technique. The proposed framework achieves an overall accuracy, precision, recall, F1-score, and AUC of 96%, 94%, 92%, 93%, and 94%, respectively, for the binary classification task that is normal vs. malignant. An elaborate study of the performance achieved by our proposed framework on the Herlev dataset shows it to be both robust and effective for the Pap smear image classification task.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings of 4th International Conference on Frontiers in Computing and Systems
ISBN
978-981-9726-10-3
ISSN
2367-3370
e-ISSN
2367-3389
Počet stran výsledku
13
Strana od-do
293-305
Název nakladatele
Springer Singapore
Místo vydání
Singapore
Místo konání akce
Mandi, India
Datum konání akce
16. 10. 2023
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—