Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Nakagami-fuzzy imaging for grading brain tumors by analyzing fractal complexity

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18450%2F24%3A50021658" target="_blank" >RIV/62690094:18450/24:50021658 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://www.sciencedirect.com/science/article/pii/S1568494624008718?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/pii/S1568494624008718?via%3Dihub</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.asoc.2024.112097" target="_blank" >10.1016/j.asoc.2024.112097</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Nakagami-fuzzy imaging for grading brain tumors by analyzing fractal complexity

  • Popis výsledku v původním jazyce

    Gliomas are the brain tumors in glial cells, which are categorized into four numerical grades, I-II-III-IV, to quantize the aggressiveness and severity of the tumors; while divided into two major groups, high-grade (HG) and low-grade (LG), in general. Among many differences between these groups, one of the most distinct and characteristic features could be seen in the shape of the tumor boundaries by magnetic resonance imaging (MRI). Due to aggressive nature of the HG tumors in proliferation phase, the boundaries of HG tumors become more shape-wise complex compared to the LG tumors, which could be differentiated by analyzing the fractal complexity of the cell membranes. However, the complexity cannot be either manually calculated or estimated by eye inspection without a reference point with one single image or sometimes even with an image set. Therefore, we present an automated glioma grading framework to provide an insight on the grades with a novel contouring and fractal dimension analysis system. The primary component of the proposed system is an automated Nakagami imaging module with a specialized fuzzy c-means algorithm to contour the boundaries of the whole tumors. The contoured images, afterwards, are analyzed by the Minkowski-Bouligand and Hausdorff methods for two panning options to generate the fractal dimensions and to estimate the fractal complexities for classifying the gliomas The results are greatly encouraging that the overall classification accuracy is computed as 88.31 % using the basic support vector machines (SVM) classifier; while as 91.96% with the arbitrary thresholding appended. The outcomes of this paper with implementable mathematical infrastructure would be very useful and beneficial as an expert system in intelligent and automatic glioma grading, for researchers and medical experts.

  • Název v anglickém jazyce

    Nakagami-fuzzy imaging for grading brain tumors by analyzing fractal complexity

  • Popis výsledku anglicky

    Gliomas are the brain tumors in glial cells, which are categorized into four numerical grades, I-II-III-IV, to quantize the aggressiveness and severity of the tumors; while divided into two major groups, high-grade (HG) and low-grade (LG), in general. Among many differences between these groups, one of the most distinct and characteristic features could be seen in the shape of the tumor boundaries by magnetic resonance imaging (MRI). Due to aggressive nature of the HG tumors in proliferation phase, the boundaries of HG tumors become more shape-wise complex compared to the LG tumors, which could be differentiated by analyzing the fractal complexity of the cell membranes. However, the complexity cannot be either manually calculated or estimated by eye inspection without a reference point with one single image or sometimes even with an image set. Therefore, we present an automated glioma grading framework to provide an insight on the grades with a novel contouring and fractal dimension analysis system. The primary component of the proposed system is an automated Nakagami imaging module with a specialized fuzzy c-means algorithm to contour the boundaries of the whole tumors. The contoured images, afterwards, are analyzed by the Minkowski-Bouligand and Hausdorff methods for two panning options to generate the fractal dimensions and to estimate the fractal complexities for classifying the gliomas The results are greatly encouraging that the overall classification accuracy is computed as 88.31 % using the basic support vector machines (SVM) classifier; while as 91.96% with the arbitrary thresholding appended. The outcomes of this paper with implementable mathematical infrastructure would be very useful and beneficial as an expert system in intelligent and automatic glioma grading, for researchers and medical experts.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2024

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Applied soft computing

  • ISSN

    1568-4946

  • e-ISSN

    1872-9681

  • Svazek periodika

    165

  • Číslo periodika v rámci svazku

    November

  • Stát vydavatele periodika

    NL - Nizozemsko

  • Počet stran výsledku

    16

  • Strana od-do

    "Article Number: 112097"

  • Kód UT WoS článku

    001295704800001

  • EID výsledku v databázi Scopus

    2-s2.0-85201069097