Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

From the Evolution of Public Data Ecosystems to the Evolving Horizons of the Forward-Looking Intelligent Public Data Ecosystem Empowered by Emerging Technologies

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18450%2F24%3A50021792" target="_blank" >RIV/62690094:18450/24:50021792 - isvavai.cz</a>

  • Výsledek na webu

    <a href="http://dx.doi.org/10.1007/978-3-031-70274-7_25" target="_blank" >http://dx.doi.org/10.1007/978-3-031-70274-7_25</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-031-70274-7_25" target="_blank" >10.1007/978-3-031-70274-7_25</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    From the Evolution of Public Data Ecosystems to the Evolving Horizons of the Forward-Looking Intelligent Public Data Ecosystem Empowered by Emerging Technologies

  • Popis výsledku v původním jazyce

    Public Data Ecosystems (PDEs) represent complex socio-technical systems crucial for optimizing data use in the public sector and outside it. Recognizing their multifaceted nature, previous research proposed a six-generation Evolutionary Model of Public Data Ecosystems (EMPDE). Designed as a result of a systematic literature review on the topic spanning three decades, this model, while theoretically robust, necessitates empirical validation to enhance its practical applicability. This study addresses this gap by validating the theoretical model through a real-life examination in five European countries - Latvia, Serbia, Czech Republic, Spain, and Poland. This empirical validation provides insights into PDEs dynamics and variations of implementations across contexts, particularly focusing on the 6th generation of forward-looking PDE generation named &quot;Intelligent Public Data Generation&quot; which represents a paradigm shift driven by emerging technologies such as cloud computing, Artificial Intelligence (AI), Natural Language Processing tools, Generative AI, and Large Language Models with potential to contribute to both automation and augmentation of business processes within these ecosystems. By transcending their traditional status as a mere component, evolving into both an actor and a stakeholder simultaneously, these technologies catalyse innovation and progress, enhancing PDE management strategies to align with societal, regulatory, and technical imperatives in the digital era.

  • Název v anglickém jazyce

    From the Evolution of Public Data Ecosystems to the Evolving Horizons of the Forward-Looking Intelligent Public Data Ecosystem Empowered by Emerging Technologies

  • Popis výsledku anglicky

    Public Data Ecosystems (PDEs) represent complex socio-technical systems crucial for optimizing data use in the public sector and outside it. Recognizing their multifaceted nature, previous research proposed a six-generation Evolutionary Model of Public Data Ecosystems (EMPDE). Designed as a result of a systematic literature review on the topic spanning three decades, this model, while theoretically robust, necessitates empirical validation to enhance its practical applicability. This study addresses this gap by validating the theoretical model through a real-life examination in five European countries - Latvia, Serbia, Czech Republic, Spain, and Poland. This empirical validation provides insights into PDEs dynamics and variations of implementations across contexts, particularly focusing on the 6th generation of forward-looking PDE generation named &quot;Intelligent Public Data Generation&quot; which represents a paradigm shift driven by emerging technologies such as cloud computing, Artificial Intelligence (AI), Natural Language Processing tools, Generative AI, and Large Language Models with potential to contribute to both automation and augmentation of business processes within these ecosystems. By transcending their traditional status as a mere component, evolving into both an actor and a stakeholder simultaneously, these technologies catalyse innovation and progress, enhancing PDE management strategies to align with societal, regulatory, and technical imperatives in the digital era.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2024

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    ELECTRONIC GOVERNMENT, EGOV 2024

  • ISBN

    978-3-031-70274-7

  • ISSN

    0302-9743

  • e-ISSN

    1611-3349

  • Počet stran výsledku

    17

  • Strana od-do

    402-418

  • Název nakladatele

    SPRINGER INTERNATIONAL PUBLISHING AG

  • Místo vydání

    Cham

  • Místo konání akce

    Ghent

  • Datum konání akce

    3. 9. 2024

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku

    001308584400025