Machine learning for rapid mapping of archaeological structures made of dry stones – Example of burial monuments from the Khirgisuur culture, Mongolia –
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18460%2F20%3A50017152" target="_blank" >RIV/62690094:18460/20:50017152 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1016/j.culher.2020.01.002" target="_blank" >https://doi.org/10.1016/j.culher.2020.01.002</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.culher.2020.01.002" target="_blank" >10.1016/j.culher.2020.01.002</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Machine learning for rapid mapping of archaeological structures made of dry stones – Example of burial monuments from the Khirgisuur culture, Mongolia –
Popis výsledku v původním jazyce
The present study proposes a workflow to extract from orthomosaics the enormous amount of dry stones used by past societies to construct funeral complexes in the Mongolian steppes. Several different machine learning algorithms for binary pixel classification (i.e. stone vs non-stone) were evaluated. Input features were extracted from high-resolution orthomosaics and digital elevation models (both derived from aerial imaging). Comparative analysis used two colour spaces (RGB and HSV), texture features (contrast, homogeneity and entropy raster maps), and the topographic position index, combined with nine supervised learning algorithms (nearest centroid, naive Bayes, k-nearest neighbours, logistic regression, linear and quadratic discriminant analyses, support vector machine, random forest, and artificial neural network). When features are processed together, excellent output maps, very close to or outperforming current standards in archaeology, are observed for almost all classifiers. The size of the training set can be drastically reduced (to ca. 300 samples) by majority voting, while maintaining performance at the highest level (about 99.5% for all performance scores). Note, however, that if the training set is inadequate or not fully representative, the classification results are poor. That said, the methods applied and tested here are extremely rapid. Extensive mapping, which would have been difficult with traditional, manual, or semi-automatic delineation of stones using a vector graphics editor, now becomes possible. This workflow generally surpasses pedestrian surveys using differential GPS or a total station.
Název v anglickém jazyce
Machine learning for rapid mapping of archaeological structures made of dry stones – Example of burial monuments from the Khirgisuur culture, Mongolia –
Popis výsledku anglicky
The present study proposes a workflow to extract from orthomosaics the enormous amount of dry stones used by past societies to construct funeral complexes in the Mongolian steppes. Several different machine learning algorithms for binary pixel classification (i.e. stone vs non-stone) were evaluated. Input features were extracted from high-resolution orthomosaics and digital elevation models (both derived from aerial imaging). Comparative analysis used two colour spaces (RGB and HSV), texture features (contrast, homogeneity and entropy raster maps), and the topographic position index, combined with nine supervised learning algorithms (nearest centroid, naive Bayes, k-nearest neighbours, logistic regression, linear and quadratic discriminant analyses, support vector machine, random forest, and artificial neural network). When features are processed together, excellent output maps, very close to or outperforming current standards in archaeology, are observed for almost all classifiers. The size of the training set can be drastically reduced (to ca. 300 samples) by majority voting, while maintaining performance at the highest level (about 99.5% for all performance scores). Note, however, that if the training set is inadequate or not fully representative, the classification results are poor. That said, the methods applied and tested here are extremely rapid. Extensive mapping, which would have been difficult with traditional, manual, or semi-automatic delineation of stones using a vector graphics editor, now becomes possible. This workflow generally surpasses pedestrian surveys using differential GPS or a total station.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
60102 - Archaeology
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of cultural heritage
ISSN
1296-2074
e-ISSN
—
Svazek periodika
43
Číslo periodika v rámci svazku
neuvedeno
Stát vydavatele periodika
FR - Francouzská republika
Počet stran výsledku
11
Strana od-do
118-128
Kód UT WoS článku
000545314900013
EID výsledku v databázi Scopus
2-s2.0-85078149399