Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Machine learning for rapid mapping of archaeological structures made of dry stones – Example of burial monuments from the Khirgisuur culture, Mongolia –

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18460%2F20%3A50017152" target="_blank" >RIV/62690094:18460/20:50017152 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://doi.org/10.1016/j.culher.2020.01.002" target="_blank" >https://doi.org/10.1016/j.culher.2020.01.002</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.culher.2020.01.002" target="_blank" >10.1016/j.culher.2020.01.002</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Machine learning for rapid mapping of archaeological structures made of dry stones – Example of burial monuments from the Khirgisuur culture, Mongolia –

  • Popis výsledku v původním jazyce

    The present study proposes a workflow to extract from orthomosaics the enormous amount of dry stones used by past societies to construct funeral complexes in the Mongolian steppes. Several different machine learning algorithms for binary pixel classification (i.e. stone vs non-stone) were evaluated. Input features were extracted from high-resolution orthomosaics and digital elevation models (both derived from aerial imaging). Comparative analysis used two colour spaces (RGB and HSV), texture features (contrast, homogeneity and entropy raster maps), and the topographic position index, combined with nine supervised learning algorithms (nearest centroid, naive Bayes, k-nearest neighbours, logistic regression, linear and quadratic discriminant analyses, support vector machine, random forest, and artificial neural network). When features are processed together, excellent output maps, very close to or outperforming current standards in archaeology, are observed for almost all classifiers. The size of the training set can be drastically reduced (to ca. 300 samples) by majority voting, while maintaining performance at the highest level (about 99.5% for all performance scores). Note, however, that if the training set is inadequate or not fully representative, the classification results are poor. That said, the methods applied and tested here are extremely rapid. Extensive mapping, which would have been difficult with traditional, manual, or semi-automatic delineation of stones using a vector graphics editor, now becomes possible. This workflow generally surpasses pedestrian surveys using differential GPS or a total station.

  • Název v anglickém jazyce

    Machine learning for rapid mapping of archaeological structures made of dry stones – Example of burial monuments from the Khirgisuur culture, Mongolia –

  • Popis výsledku anglicky

    The present study proposes a workflow to extract from orthomosaics the enormous amount of dry stones used by past societies to construct funeral complexes in the Mongolian steppes. Several different machine learning algorithms for binary pixel classification (i.e. stone vs non-stone) were evaluated. Input features were extracted from high-resolution orthomosaics and digital elevation models (both derived from aerial imaging). Comparative analysis used two colour spaces (RGB and HSV), texture features (contrast, homogeneity and entropy raster maps), and the topographic position index, combined with nine supervised learning algorithms (nearest centroid, naive Bayes, k-nearest neighbours, logistic regression, linear and quadratic discriminant analyses, support vector machine, random forest, and artificial neural network). When features are processed together, excellent output maps, very close to or outperforming current standards in archaeology, are observed for almost all classifiers. The size of the training set can be drastically reduced (to ca. 300 samples) by majority voting, while maintaining performance at the highest level (about 99.5% for all performance scores). Note, however, that if the training set is inadequate or not fully representative, the classification results are poor. That said, the methods applied and tested here are extremely rapid. Extensive mapping, which would have been difficult with traditional, manual, or semi-automatic delineation of stones using a vector graphics editor, now becomes possible. This workflow generally surpasses pedestrian surveys using differential GPS or a total station.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    60102 - Archaeology

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2020

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Journal of cultural heritage

  • ISSN

    1296-2074

  • e-ISSN

  • Svazek periodika

    43

  • Číslo periodika v rámci svazku

    neuvedeno

  • Stát vydavatele periodika

    FR - Francouzská republika

  • Počet stran výsledku

    11

  • Strana od-do

    118-128

  • Kód UT WoS článku

    000545314900013

  • EID výsledku v databázi Scopus

    2-s2.0-85078149399