Lowest degree invariant second-order PDEs over rational homogeneous contact manifolds
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18470%2F19%3A50017605" target="_blank" >RIV/62690094:18470/19:50017605 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.worldscientific.com/doi/abs/10.1142/S0219199717500894" target="_blank" >https://www.worldscientific.com/doi/abs/10.1142/S0219199717500894</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1142/S0219199717500894" target="_blank" >10.1142/S0219199717500894</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Lowest degree invariant second-order PDEs over rational homogeneous contact manifolds
Popis výsledku v původním jazyce
For each simple Lie algebra g (excluding, for trivial reasons, type C), we find the lowest possible degree of an invariant second-order PDE over the adjoint variety in Pg, a homogeneous contact manifold. Here a PDE F (x(i), u, u(i),( )u(ij)) = 0 has degree <= d if F is a polynomial of degree <= d in the minors of (u(ij)), with coefficient functions of the contact coordinate x(i), u, u(i) (e.g., Monge-Ampbre equations have degree 1). For g of type A or G(2), we show that this gives all invariant second-order PDEs. For g of types B and D, we provide an explicit formula for the lowest-degree invariant second-order PDEs. For g of types E and F-4, we prove uniqueness of the lowest-degree invariant second-order PDE; we also conjecture that uniqueness holds in type D.
Název v anglickém jazyce
Lowest degree invariant second-order PDEs over rational homogeneous contact manifolds
Popis výsledku anglicky
For each simple Lie algebra g (excluding, for trivial reasons, type C), we find the lowest possible degree of an invariant second-order PDE over the adjoint variety in Pg, a homogeneous contact manifold. Here a PDE F (x(i), u, u(i),( )u(ij)) = 0 has degree <= d if F is a polynomial of degree <= d in the minors of (u(ij)), with coefficient functions of the contact coordinate x(i), u, u(i) (e.g., Monge-Ampbre equations have degree 1). For g of type A or G(2), we show that this gives all invariant second-order PDEs. For g of types B and D, we provide an explicit formula for the lowest-degree invariant second-order PDEs. For g of types E and F-4, we prove uniqueness of the lowest-degree invariant second-order PDE; we also conjecture that uniqueness holds in type D.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10101 - Pure mathematics
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Communications in Contemporary Mathematics
ISSN
0219-1997
e-ISSN
—
Svazek periodika
21
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
SG - Singapurská republika
Počet stran výsledku
54
Strana od-do
"Article Number: 1750089"
Kód UT WoS článku
000457113400003
EID výsledku v databázi Scopus
—