Reinforcement Learning-Based Distributed BESS Management for Mitigating Overvoltage Issues in Systems with High PV Penetration
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18470%2F20%3A50016886" target="_blank" >RIV/62690094:18470/20:50016886 - isvavai.cz</a>
Výsledek na webu
<a href="https://ieeexplore.ieee.org/document/8985179" target="_blank" >https://ieeexplore.ieee.org/document/8985179</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/TSG.2020.2972208" target="_blank" >10.1109/TSG.2020.2972208</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Reinforcement Learning-Based Distributed BESS Management for Mitigating Overvoltage Issues in Systems with High PV Penetration
Popis výsledku v původním jazyce
High levels of penetration of distributed photovoltaic generators can cause serious overvoltage issues, especially during periods of high power generation and light loads. There have been many solutions proposed to mitigate the voltage problems, some of them using battery energy storage systems (BESS) at the PV generation sites. In addition to their ability to absorb extra power during the light load periods, BESS can also supply additional power under high load conditions. However, their capacity may not be sufficient to allow charging every time when power absorption is desired. Therefore, typical PV/BESS may not fully prevent over-voltage problems in power distribution grids. This work develops a cooperative state of charge control scheme to alleviate the BESS capacity problem through Monte Carlo tree search based reinforcement learning (MCTS-RL). The proposed intelligent method coordinates the distributed batteries from other regions to provide voltage regulation in a distribution network. Furthermore, the energy optimization process during the day hours and the simultaneous state of charge control are achieved using model predictive control (MPC). The proposed approach is demonstrated on two test cases, the IEEE 33 bus system and a practical medium size distribution system in Alberta Canada.
Název v anglickém jazyce
Reinforcement Learning-Based Distributed BESS Management for Mitigating Overvoltage Issues in Systems with High PV Penetration
Popis výsledku anglicky
High levels of penetration of distributed photovoltaic generators can cause serious overvoltage issues, especially during periods of high power generation and light loads. There have been many solutions proposed to mitigate the voltage problems, some of them using battery energy storage systems (BESS) at the PV generation sites. In addition to their ability to absorb extra power during the light load periods, BESS can also supply additional power under high load conditions. However, their capacity may not be sufficient to allow charging every time when power absorption is desired. Therefore, typical PV/BESS may not fully prevent over-voltage problems in power distribution grids. This work develops a cooperative state of charge control scheme to alleviate the BESS capacity problem through Monte Carlo tree search based reinforcement learning (MCTS-RL). The proposed intelligent method coordinates the distributed batteries from other regions to provide voltage regulation in a distribution network. Furthermore, the energy optimization process during the day hours and the simultaneous state of charge control are achieved using model predictive control (MPC). The proposed approach is demonstrated on two test cases, the IEEE 33 bus system and a practical medium size distribution system in Alberta Canada.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20202 - Communication engineering and systems
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
IEEE Transactions on Smart Grid
ISSN
1949-3053
e-ISSN
—
Svazek periodika
11
Číslo periodika v rámci svazku
4
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
15
Strana od-do
2980-2994
Kód UT WoS článku
000542571700020
EID výsledku v databázi Scopus
2-s2.0-85087545607