Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Nanogenerator for dynamic stimuli detection and mechanical energy harvesting based on compressed SbSeI nanowires

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18470%2F20%3A50017620" target="_blank" >RIV/62690094:18470/20:50017620 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://www.sciencedirect.com/science/article/pii/S0360544220318259?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0360544220318259?via%3Dihub</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.energy.2020.118717" target="_blank" >10.1016/j.energy.2020.118717</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Nanogenerator for dynamic stimuli detection and mechanical energy harvesting based on compressed SbSeI nanowires

  • Popis výsledku v původním jazyce

    In this paper, a novel fabrication technology for generating antimony selenoiodide (SbSeI) nanowire pellets is presented, and their application as piezoelectric nanogenerators is discussed. The prepared samples can be used to convert mechanical energy into electrical energy via the piezoelectric effect. The SbSeI nanowires are fabricated sonochemically and then compressed under high pressure (120 MPa). The morphological and electrical properties of the samples have been investigated using various techniques, including scanning electron microscopy, high-resolution transmission electron microscopy, and other electrical and piezoelectric measurements. The relationship between frequency of impact and the piezoelectric signal has been measured to calculate the output voltage and power produced by the nanogenerator. The maximum open circuit voltage of 384.7 (11) mV, corresponding to a maximum surface power density of 14.1 (21) nW, cm(-2) and volume power density of 0.380 (83) mu W, cm(-3) has been achieved for periodic striking excitation with force of 17.8 N and resonant frequency of 70 Hz. The presented SbSeI nanogenerator has been found as promising for mechanical energy harvesting applications. Furthermore, it can also be employed as a self-powered sensor for the detection of dynamic pressure changes and vibrations with frequencies up to 200 Hz. (c) 2020 Elsevier Ltd. All rights reserved.

  • Název v anglickém jazyce

    Nanogenerator for dynamic stimuli detection and mechanical energy harvesting based on compressed SbSeI nanowires

  • Popis výsledku anglicky

    In this paper, a novel fabrication technology for generating antimony selenoiodide (SbSeI) nanowire pellets is presented, and their application as piezoelectric nanogenerators is discussed. The prepared samples can be used to convert mechanical energy into electrical energy via the piezoelectric effect. The SbSeI nanowires are fabricated sonochemically and then compressed under high pressure (120 MPa). The morphological and electrical properties of the samples have been investigated using various techniques, including scanning electron microscopy, high-resolution transmission electron microscopy, and other electrical and piezoelectric measurements. The relationship between frequency of impact and the piezoelectric signal has been measured to calculate the output voltage and power produced by the nanogenerator. The maximum open circuit voltage of 384.7 (11) mV, corresponding to a maximum surface power density of 14.1 (21) nW, cm(-2) and volume power density of 0.380 (83) mu W, cm(-3) has been achieved for periodic striking excitation with force of 17.8 N and resonant frequency of 70 Hz. The presented SbSeI nanogenerator has been found as promising for mechanical energy harvesting applications. Furthermore, it can also be employed as a self-powered sensor for the detection of dynamic pressure changes and vibrations with frequencies up to 200 Hz. (c) 2020 Elsevier Ltd. All rights reserved.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10302 - Condensed matter physics (including formerly solid state physics, supercond.)

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2020

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Energy

  • ISSN

    0360-5442

  • e-ISSN

  • Svazek periodika

    212

  • Číslo periodika v rámci svazku

    December

  • Stát vydavatele periodika

    GB - Spojené království Velké Británie a Severního Irska

  • Počet stran výsledku

    11

  • Strana od-do

    "Article Number: 118717"

  • Kód UT WoS článku

    000596123000005

  • EID výsledku v databázi Scopus

    2-s2.0-85090341803