Quantum Hamiltonians with Weak Random Abstract Perturbation. II. Localization in the Expanded Spectrum
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18470%2F21%3A50017893" target="_blank" >RIV/62690094:18470/21:50017893 - isvavai.cz</a>
Výsledek na webu
<a href="https://link.springer.com/article/10.1007/s10955-020-02683-0" target="_blank" >https://link.springer.com/article/10.1007/s10955-020-02683-0</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s10955-020-02683-0" target="_blank" >10.1007/s10955-020-02683-0</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Quantum Hamiltonians with Weak Random Abstract Perturbation. II. Localization in the Expanded Spectrum
Popis výsledku v původním jazyce
We consider multi-dimensional Schrodinger operators with a weak random perturbation distributed in the cells of some periodic lattice. In every cell the perturbation is described by the translate of a fixed abstract operator depending on a random variable. The random variables, indexed by the lattice, are assumed to be independent and identically distributed according to an absolutely continuous probability density. A small global coupling constant tunes the strength of the perturbation. We treat analogous random Hamiltonians defined on multi-dimensional layers, as well. For such models we determine the location of the almost sure spectrum and its dependence on the global coupling constant. In this paper we concentrate on the case that the spectrum expands when the perturbation is switched on. Furthermore, we derive a Wegner estimate and an initial length scale estimate, which together with Combes-Thomas estimate allow to invoke the multi-scale analysis proof of localization. We specify an energy region, including the bottom of the almost sure spectrum, which exhibits spectral and dynamical localization. Due to our treatment of general, abstract perturbations our results apply at once to many interesting examples both known and new.
Název v anglickém jazyce
Quantum Hamiltonians with Weak Random Abstract Perturbation. II. Localization in the Expanded Spectrum
Popis výsledku anglicky
We consider multi-dimensional Schrodinger operators with a weak random perturbation distributed in the cells of some periodic lattice. In every cell the perturbation is described by the translate of a fixed abstract operator depending on a random variable. The random variables, indexed by the lattice, are assumed to be independent and identically distributed according to an absolutely continuous probability density. A small global coupling constant tunes the strength of the perturbation. We treat analogous random Hamiltonians defined on multi-dimensional layers, as well. For such models we determine the location of the almost sure spectrum and its dependence on the global coupling constant. In this paper we concentrate on the case that the spectrum expands when the perturbation is switched on. Furthermore, we derive a Wegner estimate and an initial length scale estimate, which together with Combes-Thomas estimate allow to invoke the multi-scale analysis proof of localization. We specify an energy region, including the bottom of the almost sure spectrum, which exhibits spectral and dynamical localization. Due to our treatment of general, abstract perturbations our results apply at once to many interesting examples both known and new.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10102 - Applied mathematics
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
JOURNAL OF STATISTICAL PHYSICS
ISSN
0022-4715
e-ISSN
—
Svazek periodika
182
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
48
Strana od-do
"Article Number: 1"
Kód UT WoS článku
000604097400001
EID výsledku v databázi Scopus
—