Bound state solutions of the Klein-Gordon equation with energy-dependent potentials
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18470%2F21%3A50017935" target="_blank" >RIV/62690094:18470/21:50017935 - isvavai.cz</a>
Výsledek na webu
<a href="http://doi.org/10.1142/S0217732321500164" target="_blank" >http://doi.org/10.1142/S0217732321500164</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1142/S0217732321500164" target="_blank" >10.1142/S0217732321500164</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Bound state solutions of the Klein-Gordon equation with energy-dependent potentials
Popis výsledku v původním jazyce
In this paper, we investigate the exact bound state solution of the Klein-Gordon equation for an energy-dependent Coulomb-like vector plus scalar potential energies. To the best of our knowledge, this problem is examined in literature with a constant and position dependent mass functions. As a novelty, we assume a mass-function that depends on energy and position and revisit the problem with the following cases: First, we examine the case where the mixed vector and scalar potential energy possess equal magnitude and equal sign as well as an opposite sign. Then, we study pure scalar and pure vector cases. In each case, we derive an analytic expression of the energy spectrum by employing the asymptotic iteration method. We obtain a nontrivial relation among the tuning parameters which lead the examined problem to a constant mass one. Finally, we calculate the energy spectrum by the Secant method and show that the corresponding unnormalized wave functions satisfy the boundary conditions. We conclude the paper with a comparison of the calculated energy spectra versus tuning parameters.
Název v anglickém jazyce
Bound state solutions of the Klein-Gordon equation with energy-dependent potentials
Popis výsledku anglicky
In this paper, we investigate the exact bound state solution of the Klein-Gordon equation for an energy-dependent Coulomb-like vector plus scalar potential energies. To the best of our knowledge, this problem is examined in literature with a constant and position dependent mass functions. As a novelty, we assume a mass-function that depends on energy and position and revisit the problem with the following cases: First, we examine the case where the mixed vector and scalar potential energy possess equal magnitude and equal sign as well as an opposite sign. Then, we study pure scalar and pure vector cases. In each case, we derive an analytic expression of the energy spectrum by employing the asymptotic iteration method. We obtain a nontrivial relation among the tuning parameters which lead the examined problem to a constant mass one. Finally, we calculate the energy spectrum by the Secant method and show that the corresponding unnormalized wave functions satisfy the boundary conditions. We conclude the paper with a comparison of the calculated energy spectra versus tuning parameters.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10303 - Particles and field physics
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Modern Physics Letters A
ISSN
0217-7323
e-ISSN
—
Svazek periodika
36
Číslo periodika v rámci svazku
4
Stát vydavatele periodika
SG - Singapurská republika
Počet stran výsledku
19
Strana od-do
"Article Number: 2150016"
Kód UT WoS článku
000617677700002
EID výsledku v databázi Scopus
2-s2.0-85097913933