Northern Goshawk Optimization: A New Swarm-Based Algorithm for Solving Optimization Problems
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18470%2F21%3A50018821" target="_blank" >RIV/62690094:18470/21:50018821 - isvavai.cz</a>
Výsledek na webu
<a href="https://ieeexplore.ieee.org/document/9638618" target="_blank" >https://ieeexplore.ieee.org/document/9638618</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/ACCESS.2021.3133286" target="_blank" >10.1109/ACCESS.2021.3133286</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Northern Goshawk Optimization: A New Swarm-Based Algorithm for Solving Optimization Problems
Popis výsledku v původním jazyce
Optimization algorithms are one of the effective stochastic methods in solving optimization problems. In this paper, a new swarm-based algorithm called Northern Goshawk Optimization (NGO) algorithm is presented that simulates the behavior of northern goshawk during prey hunting. This hunting strategy includes two phases of prey identification and the tail and chase process. The various steps of the proposed NGO algorithm are described and then its mathematical modeling is presented for use in solving optimization problems. The ability of NGO to solve optimization problems is evaluated on sixty-eight different objective functions. To analyze the quality of the results, the proposed NGO algorithm is compared with eight well-known algorithms, particle swarm optimization, genetic algorithm, teaching-learning based optimization, gravitational search algorithm, grey wolf optimizer, whale optimization algorithm, tunicate swarm algorithm, and marine predators algorithm. In addition, for further analysis, the proposed algorithm is also employed to solve four engineering design problems. The results of simulations and experiments show that the proposed NGO algorithm, by creating a proper balance between exploration and exploitation, has an effective performance in solving optimization problems and is much more competitive than similar algorithms.
Název v anglickém jazyce
Northern Goshawk Optimization: A New Swarm-Based Algorithm for Solving Optimization Problems
Popis výsledku anglicky
Optimization algorithms are one of the effective stochastic methods in solving optimization problems. In this paper, a new swarm-based algorithm called Northern Goshawk Optimization (NGO) algorithm is presented that simulates the behavior of northern goshawk during prey hunting. This hunting strategy includes two phases of prey identification and the tail and chase process. The various steps of the proposed NGO algorithm are described and then its mathematical modeling is presented for use in solving optimization problems. The ability of NGO to solve optimization problems is evaluated on sixty-eight different objective functions. To analyze the quality of the results, the proposed NGO algorithm is compared with eight well-known algorithms, particle swarm optimization, genetic algorithm, teaching-learning based optimization, gravitational search algorithm, grey wolf optimizer, whale optimization algorithm, tunicate swarm algorithm, and marine predators algorithm. In addition, for further analysis, the proposed algorithm is also employed to solve four engineering design problems. The results of simulations and experiments show that the proposed NGO algorithm, by creating a proper balance between exploration and exploitation, has an effective performance in solving optimization problems and is much more competitive than similar algorithms.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
IEEE Access
ISSN
2169-3536
e-ISSN
—
Svazek periodika
9
Číslo periodika v rámci svazku
06.12.2021
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
22
Strana od-do
162059-162080
Kód UT WoS článku
000730458900001
EID výsledku v databázi Scopus
2-s2.0-85121349685