Bose-Einstein Condensation Processes with Nontrivial Geometric Multiplicities Realized via PT-Symmetric and Exactly Solvable Linear-Bose-Hubbard Building Blocks
Popis výsledku
—
Klíčová slova
Identifikátory výsledku
Kód výsledku v IS VaVaI
Výsledek na webu
DOI - Digital Object Identifier
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Bose-Einstein Condensation Processes with Nontrivial Geometric Multiplicities Realized via PT-Symmetric and Exactly Solvable Linear-Bose-Hubbard Building Blocks
Popis výsledku v původním jazyce
It is well known that, using the conventional non-Hermitian but (Formula presented.) symmetric Bose-Hubbard Hamiltonian with real spectrum, one can realize the Bose-Einstein condensation (BEC) process in an exceptional-point limit of order N. Such an exactly solvable simulation of the BEC-type phase transition is, unfortunately, incomplete because the standard version of the model only offers an extreme form of the limit, characterized by a minimal geometric multiplicity (Formula presented.). In our paper, we describe a rescaled and partitioned direct-sum modification of the linear version of the Bose-Hubbard model, which remains exactly solvable while admitting any value of (Formula presented.). It offers a complete menu of benchmark models numbered by a specific combinatorial scheme. In this manner, an exhaustive classification of the general BEC patterns with any geometric multiplicity is obtained and realized in terms of an exactly solvable generalized Bose-Hubbard model. © 2021 by the author.
Název v anglickém jazyce
Bose-Einstein Condensation Processes with Nontrivial Geometric Multiplicities Realized via PT-Symmetric and Exactly Solvable Linear-Bose-Hubbard Building Blocks
Popis výsledku anglicky
It is well known that, using the conventional non-Hermitian but (Formula presented.) symmetric Bose-Hubbard Hamiltonian with real spectrum, one can realize the Bose-Einstein condensation (BEC) process in an exceptional-point limit of order N. Such an exactly solvable simulation of the BEC-type phase transition is, unfortunately, incomplete because the standard version of the model only offers an extreme form of the limit, characterized by a minimal geometric multiplicity (Formula presented.). In our paper, we describe a rescaled and partitioned direct-sum modification of the linear version of the Bose-Hubbard model, which remains exactly solvable while admitting any value of (Formula presented.). It offers a complete menu of benchmark models numbered by a specific combinatorial scheme. In this manner, an exhaustive classification of the general BEC patterns with any geometric multiplicity is obtained and realized in terms of an exactly solvable generalized Bose-Hubbard model. © 2021 by the author.
Klasifikace
Druh
JSC - Článek v periodiku v databázi SCOPUS
CEP obor
—
OECD FORD obor
10301 - Atomic, molecular and chemical physics (physics of atoms and molecules including collision, interaction with radiation, magnetic resonances, Mössbauer effect)
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Quantum Reports
ISSN
2624-960X
e-ISSN
2624-960X
Svazek periodika
3
Číslo periodika v rámci svazku
3
Stát vydavatele periodika
CH - Švýcarská konfederace
Počet stran výsledku
17
Strana od-do
517-533
Kód UT WoS článku
—
EID výsledku v databázi Scopus
2-s2.0-85124640061
Základní informace
Druh výsledku
JSC - Článek v periodiku v databázi SCOPUS
OECD FORD
Atomic, molecular and chemical physics (physics of atoms and molecules including collision, interaction with radiation, magnetic resonances, Mössbauer effect)
Rok uplatnění
2021