Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

AMBO: All Members-Based Optimizer for Solving Optimization Problems

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18470%2F22%3A50018488" target="_blank" >RIV/62690094:18470/22:50018488 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://www.techscience.com/cmc/v70n2/44661" target="_blank" >https://www.techscience.com/cmc/v70n2/44661</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.32604/cmc.2022.019867" target="_blank" >10.32604/cmc.2022.019867</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    AMBO: All Members-Based Optimizer for Solving Optimization Problems

  • Popis výsledku v původním jazyce

    There are many optimization problems in different branches of science that should be solved using an appropriate methodology. Population -based optimization algorithms are one of the most efficient approaches to solve this type of problems. In this paper, a new optimization algorithm called All Members-Based Optimizer (AMBO) is introduced to solve various opti-mization problems. The main idea in designing the proposed AMBO algorithm is to use more information from the population members of the algorithm instead of just a few specific members (such as best member and worst mem-ber) to update the population matrix. Therefore, in AMBO, any member of the population can play a role in updating the population matrix. The theory of AMBO is described and then mathematically modeled for implementation on optimization problems. The performance of the proposed algorithm is evaluated on a set of twenty-three standard objective functions, which belong to three different categories: unimodal, high-dimensional multimodal, and fixed-dimensional multimodal functions. In order to analyze and compare the optimization results for the mentioned objective functions obtained by AMBO, eight other well-known algorithms have been also implemented. The optimization results demonstrate the ability of AMBO to solve various opti-mization problems. Also, comparison and analysis of the results show that AMBO is superior and more competitive than the other mentioned algorithms in providing suitable solution.

  • Název v anglickém jazyce

    AMBO: All Members-Based Optimizer for Solving Optimization Problems

  • Popis výsledku anglicky

    There are many optimization problems in different branches of science that should be solved using an appropriate methodology. Population -based optimization algorithms are one of the most efficient approaches to solve this type of problems. In this paper, a new optimization algorithm called All Members-Based Optimizer (AMBO) is introduced to solve various opti-mization problems. The main idea in designing the proposed AMBO algorithm is to use more information from the population members of the algorithm instead of just a few specific members (such as best member and worst mem-ber) to update the population matrix. Therefore, in AMBO, any member of the population can play a role in updating the population matrix. The theory of AMBO is described and then mathematically modeled for implementation on optimization problems. The performance of the proposed algorithm is evaluated on a set of twenty-three standard objective functions, which belong to three different categories: unimodal, high-dimensional multimodal, and fixed-dimensional multimodal functions. In order to analyze and compare the optimization results for the mentioned objective functions obtained by AMBO, eight other well-known algorithms have been also implemented. The optimization results demonstrate the ability of AMBO to solve various opti-mization problems. Also, comparison and analysis of the results show that AMBO is superior and more competitive than the other mentioned algorithms in providing suitable solution.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2022

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    CMC-Computers, Materials &amp; Continua

  • ISSN

    1546-2218

  • e-ISSN

    1546-2226

  • Svazek periodika

    70

  • Číslo periodika v rámci svazku

    2

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    17

  • Strana od-do

    2905-2921

  • Kód UT WoS článku

    000705964000012

  • EID výsledku v databázi Scopus

    2-s2.0-85116003060