Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

A new optimization algorithm based on average and subtraction of the best and worst members of the population for solving various optimization problems

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18470%2F22%3A50019098" target="_blank" >RIV/62690094:18470/22:50019098 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://peerj.com/articles/cs-910/#" target="_blank" >https://peerj.com/articles/cs-910/#</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.7717/peerj-cs.910" target="_blank" >10.7717/peerj-cs.910</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    A new optimization algorithm based on average and subtraction of the best and worst members of the population for solving various optimization problems

  • Popis výsledku v původním jazyce

    In this paper, a novel evolutionary-based method, called Average and Subtraction-Based Optimizer (ASBO), is presented to attain suitable quasi-optimal solutions for various optimization problems. The core idea in the design of the ASBO is to use the average information and the subtraction of the best and worst population members for guiding the algorithm population in the problem search space. The proposed ASBO is mathematically modeled with the ability to solve optimization problems. Twenty-three test functions, including unimodal and multimodal functions, have been employed to evaluate ASBO&apos;s performance in effectively solving optimization problems. The optimization results of the unimodal functions, which have only one main peak, show the high ASBO&apos;s exploitation power in converging towards global optima. In addition, the optimization results of the high-dimensional multimodal functions and fixed-dimensional multimodal functions, which have several peaks and local optima, indicate the high exploration power of ASBO in accurately searching the problem-solving space and not getting stuck in nonoptimal peaks. The simulation results show the proper balance between exploration and exploitation in ASBO in order to discover and present the optimal solution. In addition, the results obtained from the implementation of ASBO in optimizing these objective functions are analyzed compared with the results of nine well-known metaheuristic algorithms. Analysis of the optimization results obtained from ASBO against the performance of the nine compared algorithms indicates the superiority and competitiveness of the proposed algorithm in providing more appropriate solutions.

  • Název v anglickém jazyce

    A new optimization algorithm based on average and subtraction of the best and worst members of the population for solving various optimization problems

  • Popis výsledku anglicky

    In this paper, a novel evolutionary-based method, called Average and Subtraction-Based Optimizer (ASBO), is presented to attain suitable quasi-optimal solutions for various optimization problems. The core idea in the design of the ASBO is to use the average information and the subtraction of the best and worst population members for guiding the algorithm population in the problem search space. The proposed ASBO is mathematically modeled with the ability to solve optimization problems. Twenty-three test functions, including unimodal and multimodal functions, have been employed to evaluate ASBO&apos;s performance in effectively solving optimization problems. The optimization results of the unimodal functions, which have only one main peak, show the high ASBO&apos;s exploitation power in converging towards global optima. In addition, the optimization results of the high-dimensional multimodal functions and fixed-dimensional multimodal functions, which have several peaks and local optima, indicate the high exploration power of ASBO in accurately searching the problem-solving space and not getting stuck in nonoptimal peaks. The simulation results show the proper balance between exploration and exploitation in ASBO in order to discover and present the optimal solution. In addition, the results obtained from the implementation of ASBO in optimizing these objective functions are analyzed compared with the results of nine well-known metaheuristic algorithms. Analysis of the optimization results obtained from ASBO against the performance of the nine compared algorithms indicates the superiority and competitiveness of the proposed algorithm in providing more appropriate solutions.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2022

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    PeerJ Computer Science

  • ISSN

    2376-5992

  • e-ISSN

    2376-5992

  • Svazek periodika

    8

  • Číslo periodika v rámci svazku

    March

  • Stát vydavatele periodika

    GB - Spojené království Velké Británie a Severního Irska

  • Počet stran výsledku

    29

  • Strana od-do

    "Article Number: e910"

  • Kód UT WoS článku

    000768601100001

  • EID výsledku v databázi Scopus