Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Air Pollution Prediction Using Dual Graph Convolution LSTM Technique

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18470%2F22%3A50019403" target="_blank" >RIV/62690094:18470/22:50019403 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://www.techscience.com/iasc/v33n3/47103" target="_blank" >https://www.techscience.com/iasc/v33n3/47103</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.32604/iasc.2022.023962" target="_blank" >10.32604/iasc.2022.023962</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Air Pollution Prediction Using Dual Graph Convolution LSTM Technique

  • Popis výsledku v původním jazyce

    In current scenario, Wireless Sensor Networks (WSNs) has been applied on variety of applications such as targets tracking, natural resources inves-tigati on, monitoring on unapproachable place and so on. Through the sensor nodes, the information for the applications is gathered and transferred. The phy-sical coordination of these sensor nodes is determined, and it is called as localiza-tion. The WSN localization methods are studied widely for recent research with the study of small proportion of the sensor node called anchor nodes and their positions are determined through the GPS devices. Sometimes sensor nodes can be a IoT device in the network. With despite this, among the various applications, air pollution and air quality monitoring having many issues on how to place the sensor network in a wide area to monitor the air pollutants level such as carbon dioxide (CO2), nitrogen dioxides (NO2), particulate matter (PM), sulphur dioxide (SO2), ammonia (NH3) and other toxic gases involved in human and industrial activities. The responsibility of the WSN in air quality monitoring is to be posi-tioning the sensor nodes in the large area with low cost and also gather the real time data and produce the monitoring system as an accurate one. In this proposed work, deep learning-based approach called dual graph convolution and LSTM (Long Short-Term Memory) network based (air quality index) AQI predictions were performed. This uses the infrared based technology to measure the CO2, temperature and humidity, Geo statistic method and low power wireless network-ing. Accuracy of the proposed system is maximum of 95% which is higher than existing techniques.

  • Název v anglickém jazyce

    Air Pollution Prediction Using Dual Graph Convolution LSTM Technique

  • Popis výsledku anglicky

    In current scenario, Wireless Sensor Networks (WSNs) has been applied on variety of applications such as targets tracking, natural resources inves-tigati on, monitoring on unapproachable place and so on. Through the sensor nodes, the information for the applications is gathered and transferred. The phy-sical coordination of these sensor nodes is determined, and it is called as localiza-tion. The WSN localization methods are studied widely for recent research with the study of small proportion of the sensor node called anchor nodes and their positions are determined through the GPS devices. Sometimes sensor nodes can be a IoT device in the network. With despite this, among the various applications, air pollution and air quality monitoring having many issues on how to place the sensor network in a wide area to monitor the air pollutants level such as carbon dioxide (CO2), nitrogen dioxides (NO2), particulate matter (PM), sulphur dioxide (SO2), ammonia (NH3) and other toxic gases involved in human and industrial activities. The responsibility of the WSN in air quality monitoring is to be posi-tioning the sensor nodes in the large area with low cost and also gather the real time data and produce the monitoring system as an accurate one. In this proposed work, deep learning-based approach called dual graph convolution and LSTM (Long Short-Term Memory) network based (air quality index) AQI predictions were performed. This uses the infrared based technology to measure the CO2, temperature and humidity, Geo statistic method and low power wireless network-ing. Accuracy of the proposed system is maximum of 95% which is higher than existing techniques.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2022

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Intelligent Automation &amp; Soft Computing: An International Journal

  • ISSN

    1079-8587

  • e-ISSN

    2326-005X

  • Svazek periodika

    33

  • Číslo periodika v rámci svazku

    3

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    14

  • Strana od-do

    1639-1652

  • Kód UT WoS článku

    000778567600005

  • EID výsledku v databázi Scopus