Deep Reinforcement Learning-Based Operation of Transmission Battery Storage with Dynamic Thermal Line Rating
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18470%2F22%3A50019900" target="_blank" >RIV/62690094:18470/22:50019900 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.mdpi.com/1996-1073/15/23/9032" target="_blank" >https://www.mdpi.com/1996-1073/15/23/9032</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3390/en15239032" target="_blank" >10.3390/en15239032</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Deep Reinforcement Learning-Based Operation of Transmission Battery Storage with Dynamic Thermal Line Rating
Popis výsledku v původním jazyce
It is well known that dynamic thermal line rating has the potential to use power transmission infrastructure more effectively by allowing higher currents when lines are cooler; however, it is not commonly implemented. Some of the barriers to implementation can be mitigated using modern battery energy storage systems. This paper proposes a combination of dynamic thermal line rating and battery use through the application of deep reinforcement learning. In particular, several algorithms based on deep deterministic policy gradient and soft actor critic are examined, in both single- and multi-agent settings. The selected algorithms are used to control battery energy storage systems in a 6-bus test grid. The effects of load and transmissible power forecasting on the convergence of those algorithms are also examined. The soft actor critic algorithm performs best, followed by deep deterministic policy gradient, and their multi-agent versions in the same order. One-step forecasting of the load and ampacity does not provide any significant benefit for predicting battery action.
Název v anglickém jazyce
Deep Reinforcement Learning-Based Operation of Transmission Battery Storage with Dynamic Thermal Line Rating
Popis výsledku anglicky
It is well known that dynamic thermal line rating has the potential to use power transmission infrastructure more effectively by allowing higher currents when lines are cooler; however, it is not commonly implemented. Some of the barriers to implementation can be mitigated using modern battery energy storage systems. This paper proposes a combination of dynamic thermal line rating and battery use through the application of deep reinforcement learning. In particular, several algorithms based on deep deterministic policy gradient and soft actor critic are examined, in both single- and multi-agent settings. The selected algorithms are used to control battery energy storage systems in a 6-bus test grid. The effects of load and transmissible power forecasting on the convergence of those algorithms are also examined. The soft actor critic algorithm performs best, followed by deep deterministic policy gradient, and their multi-agent versions in the same order. One-step forecasting of the load and ampacity does not provide any significant benefit for predicting battery action.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20201 - Electrical and electronic engineering
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
ENERGIES
ISSN
1996-1073
e-ISSN
1996-1073
Svazek periodika
15
Číslo periodika v rámci svazku
23
Stát vydavatele periodika
CH - Švýcarská konfederace
Počet stran výsledku
15
Strana od-do
"Article Number: 9032"
Kód UT WoS článku
000897540200001
EID výsledku v databázi Scopus
2-s2.0-85143767847