Multi-Objective Real-Time Tuning of SVC Used in Electrified Traction Systems
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18470%2F22%3A50020136" target="_blank" >RIV/62690094:18470/22:50020136 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.mdpi.com/1424-8220/22/4/1584" target="_blank" >https://www.mdpi.com/1424-8220/22/4/1584</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3390/s22041584" target="_blank" >10.3390/s22041584</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Multi-Objective Real-Time Tuning of SVC Used in Electrified Traction Systems
Popis výsledku v původním jazyce
Electric train system is a very large load for the power network. This load consumes a large amount of reactive power. In addition, it causes a massive unbalance to the network, which results in many problems such as voltage drops, high transmission losses, reduction in the transformer output ability, negative sequence current, mal-operation of protective relays, etc. In this paper, a novel real-time optimization approach is presented to adjust the static VAR compensator (SVC) for the traction system to realize two objectives; current unbalance reduction and reactive power compensation. A multi-objective optimization technique entitled non-dominated sorting genetic algorithm (NSGA-II) is used to fulfill the regarded objectives simultaneously. A comprehensive simulator has been designed for electric train network modeling that is able to adjust the parameters of SVC in an optimum manner at any time and under any circumstances. The results illustrate that the provided method can efficiently reduce the unbalancing in current as well as supply the demanded reactive power with acceptable precision.
Název v anglickém jazyce
Multi-Objective Real-Time Tuning of SVC Used in Electrified Traction Systems
Popis výsledku anglicky
Electric train system is a very large load for the power network. This load consumes a large amount of reactive power. In addition, it causes a massive unbalance to the network, which results in many problems such as voltage drops, high transmission losses, reduction in the transformer output ability, negative sequence current, mal-operation of protective relays, etc. In this paper, a novel real-time optimization approach is presented to adjust the static VAR compensator (SVC) for the traction system to realize two objectives; current unbalance reduction and reactive power compensation. A multi-objective optimization technique entitled non-dominated sorting genetic algorithm (NSGA-II) is used to fulfill the regarded objectives simultaneously. A comprehensive simulator has been designed for electric train network modeling that is able to adjust the parameters of SVC in an optimum manner at any time and under any circumstances. The results illustrate that the provided method can efficiently reduce the unbalancing in current as well as supply the demanded reactive power with acceptable precision.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
SENSORS
ISSN
1424-8220
e-ISSN
1424-8220
Svazek periodika
22
Číslo periodika v rámci svazku
4
Stát vydavatele periodika
CH - Švýcarská konfederace
Počet stran výsledku
18
Strana od-do
"Article Number: 1584"
Kód UT WoS článku
000771468100001
EID výsledku v databázi Scopus
2-s2.0-85125277552