A deep learning approach for facial emotions recognition using principal component analysis and neural network techniques
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18470%2F22%3A50020172" target="_blank" >RIV/62690094:18470/22:50020172 - isvavai.cz</a>
Výsledek na webu
<a href="https://onlinelibrary.wiley.com/doi/epdf/10.1111/phor.12426" target="_blank" >https://onlinelibrary.wiley.com/doi/epdf/10.1111/phor.12426</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1111/phor.12426" target="_blank" >10.1111/phor.12426</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
A deep learning approach for facial emotions recognition using principal component analysis and neural network techniques
Popis výsledku v původním jazyce
In this work, advanced facial emotions are recognized using Neural network-based (NN) PCA methodology. The earlier models are cannot detect facial emotions with moving conditions but the CCTV and other advanced applications are mostly depending on moving object-based emotion recognition. The blurring, mask, and moving object-based facial image are applied to the training process, and at the testing condition, real-time facial images are applied. The PCA is extracting features and pre-processing the images with NN deep learning process. The proposed facial emotion recognition model is most useful for advanced applications. The design is finally verified through confusion matrix computations and gets measures like accuracy 98.34%, sensitivity 98.34% Recall 97.34%, and F score 98.45%. These output results compete with present models and outperformance the methodology.
Název v anglickém jazyce
A deep learning approach for facial emotions recognition using principal component analysis and neural network techniques
Popis výsledku anglicky
In this work, advanced facial emotions are recognized using Neural network-based (NN) PCA methodology. The earlier models are cannot detect facial emotions with moving conditions but the CCTV and other advanced applications are mostly depending on moving object-based emotion recognition. The blurring, mask, and moving object-based facial image are applied to the training process, and at the testing condition, real-time facial images are applied. The PCA is extracting features and pre-processing the images with NN deep learning process. The proposed facial emotion recognition model is most useful for advanced applications. The design is finally verified through confusion matrix computations and gets measures like accuracy 98.34%, sensitivity 98.34% Recall 97.34%, and F score 98.45%. These output results compete with present models and outperformance the methodology.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
PHOTOGRAMMETRIC RECORD
ISSN
0031-868X
e-ISSN
1477-9730
Svazek periodika
37
Číslo periodika v rámci svazku
180
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
18
Strana od-do
435-452
Kód UT WoS článku
000888531500001
EID výsledku v databázi Scopus
2-s2.0-85143389375