In-human testing of a non-invasive continuous low-energy microwave glucose sensor with advanced machine learning capabilities
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18470%2F23%3A50020824" target="_blank" >RIV/62690094:18470/23:50020824 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1016/j.bios.2023.115668" target="_blank" >https://doi.org/10.1016/j.bios.2023.115668</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.bios.2023.115668" target="_blank" >10.1016/j.bios.2023.115668</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
In-human testing of a non-invasive continuous low-energy microwave glucose sensor with advanced machine learning capabilities
Popis výsledku v původním jazyce
Continuous glucose monitoring schemes that avoid finger pricking are of utmost importance to enhance the comfort and lifestyle of diabetic patients. To this aim, we propose a microwave planar sensing platform as a potent sensing technology that extends its applications to biomedical analytes. In this paper, a compact planar resonator-based sensor is introduced for noncontact sensing of glucose. Furthermore, in vivo and in-vitro tests using a microfluidic channel system and in clinical trial settings demonstrate its reliable operation. The proposed sensor offers real-time response and a high linear correlation (R-2 similar to 0.913) between the measured sensor response and the blood glucose level (GL). The sensor is also enhanced with machine learning to predict the variation of body glucose levels for non-diabetic and diabetic patients. This addition is instrumental in triggering preemptive measures in cases of unusual glucose level trends. In addition, it allows for the detection of common artifacts of the sensor as anomalies so that they can be removed from the measured data. The proposed system is designed to noninvasively monitor interstitial glucose levels in humans, introducing the opportunity to create a customized wearable apparatus with the ability to learn.
Název v anglickém jazyce
In-human testing of a non-invasive continuous low-energy microwave glucose sensor with advanced machine learning capabilities
Popis výsledku anglicky
Continuous glucose monitoring schemes that avoid finger pricking are of utmost importance to enhance the comfort and lifestyle of diabetic patients. To this aim, we propose a microwave planar sensing platform as a potent sensing technology that extends its applications to biomedical analytes. In this paper, a compact planar resonator-based sensor is introduced for noncontact sensing of glucose. Furthermore, in vivo and in-vitro tests using a microfluidic channel system and in clinical trial settings demonstrate its reliable operation. The proposed sensor offers real-time response and a high linear correlation (R-2 similar to 0.913) between the measured sensor response and the blood glucose level (GL). The sensor is also enhanced with machine learning to predict the variation of body glucose levels for non-diabetic and diabetic patients. This addition is instrumental in triggering preemptive measures in cases of unusual glucose level trends. In addition, it allows for the detection of common artifacts of the sensor as anomalies so that they can be removed from the measured data. The proposed system is designed to noninvasively monitor interstitial glucose levels in humans, introducing the opportunity to create a customized wearable apparatus with the ability to learn.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20201 - Electrical and electronic engineering
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
BIOSENSORS & BIOELECTRONICS
ISSN
0956-5663
e-ISSN
1873-4235
Svazek periodika
241
Číslo periodika v rámci svazku
December
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
14
Strana od-do
"Article Number: 115668"
Kód UT WoS článku
001085395000001
EID výsledku v databázi Scopus
2-s2.0-85172221224