Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

In-human testing of a non-invasive continuous low-energy microwave glucose sensor with advanced machine learning capabilities

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18470%2F23%3A50020824" target="_blank" >RIV/62690094:18470/23:50020824 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://doi.org/10.1016/j.bios.2023.115668" target="_blank" >https://doi.org/10.1016/j.bios.2023.115668</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.bios.2023.115668" target="_blank" >10.1016/j.bios.2023.115668</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    In-human testing of a non-invasive continuous low-energy microwave glucose sensor with advanced machine learning capabilities

  • Popis výsledku v původním jazyce

    Continuous glucose monitoring schemes that avoid finger pricking are of utmost importance to enhance the comfort and lifestyle of diabetic patients. To this aim, we propose a microwave planar sensing platform as a potent sensing technology that extends its applications to biomedical analytes. In this paper, a compact planar resonator-based sensor is introduced for noncontact sensing of glucose. Furthermore, in vivo and in-vitro tests using a microfluidic channel system and in clinical trial settings demonstrate its reliable operation. The proposed sensor offers real-time response and a high linear correlation (R-2 similar to 0.913) between the measured sensor response and the blood glucose level (GL). The sensor is also enhanced with machine learning to predict the variation of body glucose levels for non-diabetic and diabetic patients. This addition is instrumental in triggering preemptive measures in cases of unusual glucose level trends. In addition, it allows for the detection of common artifacts of the sensor as anomalies so that they can be removed from the measured data. The proposed system is designed to noninvasively monitor interstitial glucose levels in humans, introducing the opportunity to create a customized wearable apparatus with the ability to learn.

  • Název v anglickém jazyce

    In-human testing of a non-invasive continuous low-energy microwave glucose sensor with advanced machine learning capabilities

  • Popis výsledku anglicky

    Continuous glucose monitoring schemes that avoid finger pricking are of utmost importance to enhance the comfort and lifestyle of diabetic patients. To this aim, we propose a microwave planar sensing platform as a potent sensing technology that extends its applications to biomedical analytes. In this paper, a compact planar resonator-based sensor is introduced for noncontact sensing of glucose. Furthermore, in vivo and in-vitro tests using a microfluidic channel system and in clinical trial settings demonstrate its reliable operation. The proposed sensor offers real-time response and a high linear correlation (R-2 similar to 0.913) between the measured sensor response and the blood glucose level (GL). The sensor is also enhanced with machine learning to predict the variation of body glucose levels for non-diabetic and diabetic patients. This addition is instrumental in triggering preemptive measures in cases of unusual glucose level trends. In addition, it allows for the detection of common artifacts of the sensor as anomalies so that they can be removed from the measured data. The proposed system is designed to noninvasively monitor interstitial glucose levels in humans, introducing the opportunity to create a customized wearable apparatus with the ability to learn.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    20201 - Electrical and electronic engineering

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2023

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    BIOSENSORS &amp; BIOELECTRONICS

  • ISSN

    0956-5663

  • e-ISSN

    1873-4235

  • Svazek periodika

    241

  • Číslo periodika v rámci svazku

    December

  • Stát vydavatele periodika

    GB - Spojené království Velké Británie a Severního Irska

  • Počet stran výsledku

    14

  • Strana od-do

    "Article Number: 115668"

  • Kód UT WoS článku

    001085395000001

  • EID výsledku v databázi Scopus

    2-s2.0-85172221224