Harmonic oscillator in the context of the extended uncertainty principle
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18470%2F23%3A50020944" target="_blank" >RIV/62690094:18470/23:50020944 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1142/S0217732323500797" target="_blank" >http://dx.doi.org/10.1142/S0217732323500797</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1142/S0217732323500797" target="_blank" >10.1142/S0217732323500797</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Harmonic oscillator in the context of the extended uncertainty principle
Popis výsledku v původním jazyce
At large-scale distances where the space-time is curved due to gravity, a nonzero minimal uncertainty in the momentum, (& UDelta;P)min, is being estimated to emerge. The presence of minimal uncertainty in momentum allows a modification to the quantum uncertainty principle, which is known as the extended uncertainty principle (EUP). In this work, we handle the harmonic oscillator problem in the EUP scenario and obtain analytical exact solutions in classical and semi-classical domains. In the classical context, we establish the equations of motion of the oscillator and show that the EUP-corrected frequency is depending on the energy and deformation parameter. In the semi-classical domain, we derive the energy eigenvalue levels and demonstrate that the energy spectrum depends on n2, as the feature of hard confinement. Finally, we investigate the impact of the EUP on the harmonic oscillator's thermodynamic properties by using the EUP-corrected partition functions in the classical limit in the (A)dS backgrounds.
Název v anglickém jazyce
Harmonic oscillator in the context of the extended uncertainty principle
Popis výsledku anglicky
At large-scale distances where the space-time is curved due to gravity, a nonzero minimal uncertainty in the momentum, (& UDelta;P)min, is being estimated to emerge. The presence of minimal uncertainty in momentum allows a modification to the quantum uncertainty principle, which is known as the extended uncertainty principle (EUP). In this work, we handle the harmonic oscillator problem in the EUP scenario and obtain analytical exact solutions in classical and semi-classical domains. In the classical context, we establish the equations of motion of the oscillator and show that the EUP-corrected frequency is depending on the energy and deformation parameter. In the semi-classical domain, we derive the energy eigenvalue levels and demonstrate that the energy spectrum depends on n2, as the feature of hard confinement. Finally, we investigate the impact of the EUP on the harmonic oscillator's thermodynamic properties by using the EUP-corrected partition functions in the classical limit in the (A)dS backgrounds.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10303 - Particles and field physics
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Modern Physics Letters A
ISSN
0217-7323
e-ISSN
1793-6632
Svazek periodika
38
Číslo periodika v rámci svazku
14-15
Stát vydavatele periodika
SG - Singapurská republika
Počet stran výsledku
15
Strana od-do
"Article Number: 2350079"
Kód UT WoS článku
001066240400004
EID výsledku v databázi Scopus
2-s2.0-85168945519