Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Red Panda Optimization Algorithm: An Effective Bio-Inspired Metaheuristic Algorithm for Solving Engineering Optimization Problems

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18470%2F23%3A50021143" target="_blank" >RIV/62690094:18470/23:50021143 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://ieeexplore.ieee.org/document/10144777" target="_blank" >https://ieeexplore.ieee.org/document/10144777</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/ACCESS.2023.3283422" target="_blank" >10.1109/ACCESS.2023.3283422</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Red Panda Optimization Algorithm: An Effective Bio-Inspired Metaheuristic Algorithm for Solving Engineering Optimization Problems

  • Popis výsledku v původním jazyce

    This paper presents a new bio-inspired metaheuristic algorithm called Red Panda Optimization (RPO) that imitates the natural behaviors of red pandas in nature. The main design idea of RPO is derived from two characteristic natural behaviors of red pandas: (i) foraging strategy, and (ii) climbing trees to rest. The proposed RPO approach is mathematically modeled in two phases of exploration based on the simulation of red pandas&apos; foraging strategy and exploitation based on the simulation of red pandas&apos; movement in climbing trees. The main advantage of the proposed approach is that there is no control parameter in its mathematical modeling, and for this reason, it does not need a parameter adjustment process. The performance of RPO is evaluated on fifty-two standard benchmark functions including unimodal, high-dimensional multimodal, and fixed-dimensional multimodal types as well as CEC 2017 test suite. The optimization results obtained by the proposed RPO approach are compared with the performance of twelve well-known metaheuristic algorithms. The simulation results show that RPO, by maintaining the balance between exploration and exploitation, is effective in solving optimization problems and its performance is superior over competitor algorithms. Based on the analysis of the optimization results, RPO has provided more successful performance compared to the competitor algorithms in 100% of unimodal functions, 100% of high-dimensional multimodal functions, 100% of fixed-dimensional multimodal functions, and 86.2% of CEC 2017 test suite benchmark functions. Also, the statistical analysis of the Wilcoxon rank sum test shows that the superiority of RPO in the competition with the compared algorithms is significant from a statistical point of view. In addition, the results of implementing RPO on four engineering design problems confirms the ability of the proposed approach to handle real-world optimization applications.

  • Název v anglickém jazyce

    Red Panda Optimization Algorithm: An Effective Bio-Inspired Metaheuristic Algorithm for Solving Engineering Optimization Problems

  • Popis výsledku anglicky

    This paper presents a new bio-inspired metaheuristic algorithm called Red Panda Optimization (RPO) that imitates the natural behaviors of red pandas in nature. The main design idea of RPO is derived from two characteristic natural behaviors of red pandas: (i) foraging strategy, and (ii) climbing trees to rest. The proposed RPO approach is mathematically modeled in two phases of exploration based on the simulation of red pandas&apos; foraging strategy and exploitation based on the simulation of red pandas&apos; movement in climbing trees. The main advantage of the proposed approach is that there is no control parameter in its mathematical modeling, and for this reason, it does not need a parameter adjustment process. The performance of RPO is evaluated on fifty-two standard benchmark functions including unimodal, high-dimensional multimodal, and fixed-dimensional multimodal types as well as CEC 2017 test suite. The optimization results obtained by the proposed RPO approach are compared with the performance of twelve well-known metaheuristic algorithms. The simulation results show that RPO, by maintaining the balance between exploration and exploitation, is effective in solving optimization problems and its performance is superior over competitor algorithms. Based on the analysis of the optimization results, RPO has provided more successful performance compared to the competitor algorithms in 100% of unimodal functions, 100% of high-dimensional multimodal functions, 100% of fixed-dimensional multimodal functions, and 86.2% of CEC 2017 test suite benchmark functions. Also, the statistical analysis of the Wilcoxon rank sum test shows that the superiority of RPO in the competition with the compared algorithms is significant from a statistical point of view. In addition, the results of implementing RPO on four engineering design problems confirms the ability of the proposed approach to handle real-world optimization applications.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2023

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    IEEE Access

  • ISSN

    2169-3536

  • e-ISSN

    2169-3536

  • Svazek periodika

    11

  • Číslo periodika v rámci svazku

    June

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    25

  • Strana od-do

    57203-57227

  • Kód UT WoS článku

    001010604800001

  • EID výsledku v databázi Scopus

    2-s2.0-85161511345