Red Panda Optimization Algorithm: An Effective Bio-Inspired Metaheuristic Algorithm for Solving Engineering Optimization Problems
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18470%2F23%3A50021143" target="_blank" >RIV/62690094:18470/23:50021143 - isvavai.cz</a>
Výsledek na webu
<a href="https://ieeexplore.ieee.org/document/10144777" target="_blank" >https://ieeexplore.ieee.org/document/10144777</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/ACCESS.2023.3283422" target="_blank" >10.1109/ACCESS.2023.3283422</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Red Panda Optimization Algorithm: An Effective Bio-Inspired Metaheuristic Algorithm for Solving Engineering Optimization Problems
Popis výsledku v původním jazyce
This paper presents a new bio-inspired metaheuristic algorithm called Red Panda Optimization (RPO) that imitates the natural behaviors of red pandas in nature. The main design idea of RPO is derived from two characteristic natural behaviors of red pandas: (i) foraging strategy, and (ii) climbing trees to rest. The proposed RPO approach is mathematically modeled in two phases of exploration based on the simulation of red pandas' foraging strategy and exploitation based on the simulation of red pandas' movement in climbing trees. The main advantage of the proposed approach is that there is no control parameter in its mathematical modeling, and for this reason, it does not need a parameter adjustment process. The performance of RPO is evaluated on fifty-two standard benchmark functions including unimodal, high-dimensional multimodal, and fixed-dimensional multimodal types as well as CEC 2017 test suite. The optimization results obtained by the proposed RPO approach are compared with the performance of twelve well-known metaheuristic algorithms. The simulation results show that RPO, by maintaining the balance between exploration and exploitation, is effective in solving optimization problems and its performance is superior over competitor algorithms. Based on the analysis of the optimization results, RPO has provided more successful performance compared to the competitor algorithms in 100% of unimodal functions, 100% of high-dimensional multimodal functions, 100% of fixed-dimensional multimodal functions, and 86.2% of CEC 2017 test suite benchmark functions. Also, the statistical analysis of the Wilcoxon rank sum test shows that the superiority of RPO in the competition with the compared algorithms is significant from a statistical point of view. In addition, the results of implementing RPO on four engineering design problems confirms the ability of the proposed approach to handle real-world optimization applications.
Název v anglickém jazyce
Red Panda Optimization Algorithm: An Effective Bio-Inspired Metaheuristic Algorithm for Solving Engineering Optimization Problems
Popis výsledku anglicky
This paper presents a new bio-inspired metaheuristic algorithm called Red Panda Optimization (RPO) that imitates the natural behaviors of red pandas in nature. The main design idea of RPO is derived from two characteristic natural behaviors of red pandas: (i) foraging strategy, and (ii) climbing trees to rest. The proposed RPO approach is mathematically modeled in two phases of exploration based on the simulation of red pandas' foraging strategy and exploitation based on the simulation of red pandas' movement in climbing trees. The main advantage of the proposed approach is that there is no control parameter in its mathematical modeling, and for this reason, it does not need a parameter adjustment process. The performance of RPO is evaluated on fifty-two standard benchmark functions including unimodal, high-dimensional multimodal, and fixed-dimensional multimodal types as well as CEC 2017 test suite. The optimization results obtained by the proposed RPO approach are compared with the performance of twelve well-known metaheuristic algorithms. The simulation results show that RPO, by maintaining the balance between exploration and exploitation, is effective in solving optimization problems and its performance is superior over competitor algorithms. Based on the analysis of the optimization results, RPO has provided more successful performance compared to the competitor algorithms in 100% of unimodal functions, 100% of high-dimensional multimodal functions, 100% of fixed-dimensional multimodal functions, and 86.2% of CEC 2017 test suite benchmark functions. Also, the statistical analysis of the Wilcoxon rank sum test shows that the superiority of RPO in the competition with the compared algorithms is significant from a statistical point of view. In addition, the results of implementing RPO on four engineering design problems confirms the ability of the proposed approach to handle real-world optimization applications.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
IEEE Access
ISSN
2169-3536
e-ISSN
2169-3536
Svazek periodika
11
Číslo periodika v rámci svazku
June
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
25
Strana od-do
57203-57227
Kód UT WoS článku
001010604800001
EID výsledku v databázi Scopus
2-s2.0-85161511345