Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Effect of high temperature annealing on the microstructure evolution and hardness behavior of the Inconel 625 superalloy additively manufactured by laser powder bed fusion

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18470%2F23%3A50021215" target="_blank" >RIV/62690094:18470/23:50021215 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://link.springer.com/article/10.1007/s43452-023-00787-4" target="_blank" >https://link.springer.com/article/10.1007/s43452-023-00787-4</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/s43452-023-00787-4" target="_blank" >10.1007/s43452-023-00787-4</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Effect of high temperature annealing on the microstructure evolution and hardness behavior of the Inconel 625 superalloy additively manufactured by laser powder bed fusion

  • Popis výsledku v původním jazyce

    Additive manufacturing of Inconel 625 components attracts great interest due to its ability to produce parts with complex geometries that are needed for high-temperature applications in the aerospace, energy, automotive and chemical industries. To take full advantage of the potential of additive manufacturing, an in-depth understanding of the effects of prolonged high-temperature annealing on microstructure and hardness evolution is needed. Previous research in this field has mainly focused on a limited range of temperature and time. This study aims to determine the effect of prolonged high-temperature annealing on the evolution of intermetallic phases and carbides, as well as changes in the dislocation substructure of Inconel 625 superalloy additively manufactured by laser powder bed fusion subjected to stress relief annealing and subsequent isothermal annealing at a temperature up to 800 degrees C for 5-500 h. The microstructure development is correlated with hardness behaviour. It is determined that the microstructure evolution proceeds in four stages with temperature and time increase. In the initial stress-relieved condition, a cellular microstructure with nano-sized precipitates of the Laves phase and NbC carbides at the cell walls occurs, and hardness is equal to 300 HV10. In the 1st stage of the microstructure evolution, the gamma&apos;&apos; phase particles precipitate on the cell walls, which results in hardening up to 383 HV10 in the specimen annealed at 700 degrees C for 5 h. The 2nd stage involves the precipitation of the gamma&apos;&apos; phase both on the cell walls and inside the cells, as well as the formation of dislocation networks, which contribute to the softening effect and hardness drop to 319 HV10. In the 3rd stage, at temperature 700 and 800 degrees C, the delta phase, M23C6 carbides, and the Laves phase precipitate and grow, and the subgrain boundaries are formed. The hardness is in the range of 340-350 HV10 and is higher than in the 2nd stage. In the 4th stage, as the annealing time is increased at a temperature of 800 degrees C, the delta phase and M23C6 carbides coagulate, and the Laves phase particles spheroidize or partially dissolve. Very intense precipitation and growth of the hard delta phase particles provide an increase in hardness to 402 HV10. As a result of systematic studies, the various strengthening and softening mechanisms acting during high-temperature annealing are determined.

  • Název v anglickém jazyce

    Effect of high temperature annealing on the microstructure evolution and hardness behavior of the Inconel 625 superalloy additively manufactured by laser powder bed fusion

  • Popis výsledku anglicky

    Additive manufacturing of Inconel 625 components attracts great interest due to its ability to produce parts with complex geometries that are needed for high-temperature applications in the aerospace, energy, automotive and chemical industries. To take full advantage of the potential of additive manufacturing, an in-depth understanding of the effects of prolonged high-temperature annealing on microstructure and hardness evolution is needed. Previous research in this field has mainly focused on a limited range of temperature and time. This study aims to determine the effect of prolonged high-temperature annealing on the evolution of intermetallic phases and carbides, as well as changes in the dislocation substructure of Inconel 625 superalloy additively manufactured by laser powder bed fusion subjected to stress relief annealing and subsequent isothermal annealing at a temperature up to 800 degrees C for 5-500 h. The microstructure development is correlated with hardness behaviour. It is determined that the microstructure evolution proceeds in four stages with temperature and time increase. In the initial stress-relieved condition, a cellular microstructure with nano-sized precipitates of the Laves phase and NbC carbides at the cell walls occurs, and hardness is equal to 300 HV10. In the 1st stage of the microstructure evolution, the gamma&apos;&apos; phase particles precipitate on the cell walls, which results in hardening up to 383 HV10 in the specimen annealed at 700 degrees C for 5 h. The 2nd stage involves the precipitation of the gamma&apos;&apos; phase both on the cell walls and inside the cells, as well as the formation of dislocation networks, which contribute to the softening effect and hardness drop to 319 HV10. In the 3rd stage, at temperature 700 and 800 degrees C, the delta phase, M23C6 carbides, and the Laves phase precipitate and grow, and the subgrain boundaries are formed. The hardness is in the range of 340-350 HV10 and is higher than in the 2nd stage. In the 4th stage, as the annealing time is increased at a temperature of 800 degrees C, the delta phase and M23C6 carbides coagulate, and the Laves phase particles spheroidize or partially dissolve. Very intense precipitation and growth of the hard delta phase particles provide an increase in hardness to 402 HV10. As a result of systematic studies, the various strengthening and softening mechanisms acting during high-temperature annealing are determined.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    20501 - Materials engineering

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2023

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    ARCHIVES OF CIVIL AND MECHANICAL ENGINEERING

  • ISSN

    1644-9665

  • e-ISSN

    2083-3318

  • Svazek periodika

    23

  • Číslo periodika v rámci svazku

    4

  • Stát vydavatele periodika

    GB - Spojené království Velké Británie a Severního Irska

  • Počet stran výsledku

    20

  • Strana od-do

    "Article Number: 249"

  • Kód UT WoS článku

    001091558900001

  • EID výsledku v databázi Scopus

    2-s2.0-85174502583