Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Deep learning-based photoplethysmography biometric authentication for continuous user verification

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18470%2F24%3A50021499" target="_blank" >RIV/62690094:18470/24:50021499 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://www.sciencedirect.com/science/article/pii/S1568494624002357?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/pii/S1568494624002357?via%3Dihub</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.asoc.2024.111461" target="_blank" >10.1016/j.asoc.2024.111461</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Deep learning-based photoplethysmography biometric authentication for continuous user verification

  • Popis výsledku v původním jazyce

    Biometric authentication methods have gained prominence as secure and convenient alternatives to traditional passwords and PINs. In this paper, we propose a novel approach for biometric authentication using photoplethysmography (PPG) signals and deep learning techniques. PPG is a non-invasive method that measures variations in blood volume within microvascular tissue beds, and it is typically used for monitoring heart rate and oxygen saturation. Our research leverages the unique characteristics of PPG signals to develop a robust and continuous user verification system. The primary goal of our study is to explore the feasibility and effectiveness of PPG-based biometric authentication, enabling a seamless and secure means of confirming the identity of individuals. We use a diverse dataset of PPG signals from various individuals, ensuring that it encompasses differences in skin tone, age, and other variables that can influence PPG signal characteristics. The collected data undergoes careful preprocessing, including noise removal, baseline correction, and heartbeat segmentation. For the core of our authentication system, we design and train a multiscale feature fusion deep learning (MFFD) model. This model, utilizing a Convolutional Neural Network (CNN) architecture, takes as input the relevant features extracted from PPG signals and learns to differentiate between individuals based on their unique PPG patterns. In this study, the input is constructed by gradually incorporating various features, beginning with a single PPG signal. In this study, the CNN model was trained independently, followed by the implementation of score fusion techniques. Our evaluation demonstrates the effectiveness of the PPG-based biometric authentication system, achieving high accuracy while addressing key security concerns. We consider false acceptance rate (FAR) and false rejection rate (FRR) to assess the system&apos;s performance. The model achieves the Accuracy of 99.5 % on BIDMC, 98.6 % on MIMIC, 99.2 % on CapnoBase dataset.

  • Název v anglickém jazyce

    Deep learning-based photoplethysmography biometric authentication for continuous user verification

  • Popis výsledku anglicky

    Biometric authentication methods have gained prominence as secure and convenient alternatives to traditional passwords and PINs. In this paper, we propose a novel approach for biometric authentication using photoplethysmography (PPG) signals and deep learning techniques. PPG is a non-invasive method that measures variations in blood volume within microvascular tissue beds, and it is typically used for monitoring heart rate and oxygen saturation. Our research leverages the unique characteristics of PPG signals to develop a robust and continuous user verification system. The primary goal of our study is to explore the feasibility and effectiveness of PPG-based biometric authentication, enabling a seamless and secure means of confirming the identity of individuals. We use a diverse dataset of PPG signals from various individuals, ensuring that it encompasses differences in skin tone, age, and other variables that can influence PPG signal characteristics. The collected data undergoes careful preprocessing, including noise removal, baseline correction, and heartbeat segmentation. For the core of our authentication system, we design and train a multiscale feature fusion deep learning (MFFD) model. This model, utilizing a Convolutional Neural Network (CNN) architecture, takes as input the relevant features extracted from PPG signals and learns to differentiate between individuals based on their unique PPG patterns. In this study, the input is constructed by gradually incorporating various features, beginning with a single PPG signal. In this study, the CNN model was trained independently, followed by the implementation of score fusion techniques. Our evaluation demonstrates the effectiveness of the PPG-based biometric authentication system, achieving high accuracy while addressing key security concerns. We consider false acceptance rate (FAR) and false rejection rate (FRR) to assess the system&apos;s performance. The model achieves the Accuracy of 99.5 % on BIDMC, 98.6 % on MIMIC, 99.2 % on CapnoBase dataset.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2024

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Applied soft computing

  • ISSN

    1568-4946

  • e-ISSN

    1872-9681

  • Svazek periodika

    156

  • Číslo periodika v rámci svazku

    May

  • Stát vydavatele periodika

    NL - Nizozemsko

  • Počet stran výsledku

    12

  • Strana od-do

    "Article Number:111461"

  • Kód UT WoS článku

    001216666000001

  • EID výsledku v databázi Scopus

    2-s2.0-85188862050