Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Optimizing reserve-constrained economic dispatch: Cheetah optimizer with constraint handling method in static/dynamic/single/multi-area systems

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18470%2F24%3A50021898" target="_blank" >RIV/62690094:18470/24:50021898 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://www.sciencedirect.com/science/article/pii/S0360544224034595?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0360544224034595?via%3Dihub</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.energy.2024.133681" target="_blank" >10.1016/j.energy.2024.133681</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Optimizing reserve-constrained economic dispatch: Cheetah optimizer with constraint handling method in static/dynamic/single/multi-area systems

  • Popis výsledku v původním jazyce

    Managing the power-generating units on the horizon of one-day scheduling considering all practical equality, inequality, and realistic constraints has always been a significant challenge in power systems. The constraints, such as valve-point effects, prohibited operation zones, transmission losses, and ramp rate limits corresponding to dynamic economic dispatch, change the optimization problem to a complex, nonlinear, non-smooth, high-dimensional, and non-convex one. Therefore, an efficient algorithm and a suitable constraint handling method are needed to solve practical constrained dynamic economic dispatch (DED). This paper proposes a newly developed Cheetah optimizer (CO) that coincides with a backward-forward constraint handling method to tackle the optimum operational cost. The CO algorithm&apos;s performance is verified using eight DED and ED test cases from five different systems. The suggested technique is compared with several state-of-the-art optimization algorithms regarding the effectiveness of achieved results. Numerical results evaluate the performances of the CO advantages on the benchmarks and the DED cases where the results of 5-,10- and 30-unit systems are enhanced in different cases. To achieve a higher level of realism in modeling the ED and DED problem, adopting a multi-area DED (MADED) approach has emerged as a promising strategy. In this paper, three distinct cases of MAED and MADED problems are investigated to demonstrate the effectiveness of the proposed method. Specifically, in cases involving DED-10 and 30 units, two-area 40 units ED, and four-area 40 units DED, significantly improved solutions were obtained compared to previous studies.

  • Název v anglickém jazyce

    Optimizing reserve-constrained economic dispatch: Cheetah optimizer with constraint handling method in static/dynamic/single/multi-area systems

  • Popis výsledku anglicky

    Managing the power-generating units on the horizon of one-day scheduling considering all practical equality, inequality, and realistic constraints has always been a significant challenge in power systems. The constraints, such as valve-point effects, prohibited operation zones, transmission losses, and ramp rate limits corresponding to dynamic economic dispatch, change the optimization problem to a complex, nonlinear, non-smooth, high-dimensional, and non-convex one. Therefore, an efficient algorithm and a suitable constraint handling method are needed to solve practical constrained dynamic economic dispatch (DED). This paper proposes a newly developed Cheetah optimizer (CO) that coincides with a backward-forward constraint handling method to tackle the optimum operational cost. The CO algorithm&apos;s performance is verified using eight DED and ED test cases from five different systems. The suggested technique is compared with several state-of-the-art optimization algorithms regarding the effectiveness of achieved results. Numerical results evaluate the performances of the CO advantages on the benchmarks and the DED cases where the results of 5-,10- and 30-unit systems are enhanced in different cases. To achieve a higher level of realism in modeling the ED and DED problem, adopting a multi-area DED (MADED) approach has emerged as a promising strategy. In this paper, three distinct cases of MAED and MADED problems are investigated to demonstrate the effectiveness of the proposed method. Specifically, in cases involving DED-10 and 30 units, two-area 40 units ED, and four-area 40 units DED, significantly improved solutions were obtained compared to previous studies.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    20201 - Electrical and electronic engineering

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2024

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Energy

  • ISSN

    0360-5442

  • e-ISSN

    1873-6785

  • Svazek periodika

    313

  • Číslo periodika v rámci svazku

    December

  • Stát vydavatele periodika

    GB - Spojené království Velké Británie a Severního Irska

  • Počet stran výsledku

    23

  • Strana od-do

    "Article number: 133681"

  • Kód UT WoS článku

    001359882500001

  • EID výsledku v databázi Scopus

    2-s2.0-85208978731