Genetic Algorithm for Automatic tuning of neural network hyperparameters
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F63839172%3A_____%2F18%3A10133127" target="_blank" >RIV/63839172:_____/18:10133127 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1117/12.2304955" target="_blank" >http://dx.doi.org/10.1117/12.2304955</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1117/12.2304955" target="_blank" >10.1117/12.2304955</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Genetic Algorithm for Automatic tuning of neural network hyperparameters
Popis výsledku v původním jazyce
Articial neural networks affect our everyday life. But every neural network depends on the appropriate training set and setting of internal properties with hyperparameters. Even accurate and complete training set doesnt imply high performance of neural network algorithm. Tuning of hyperparameters is crucial for correct functionality, fast learning and high accuracy of neural networks. The hyperparameter selection relies on manual ne-tuning based on multiple full training trials. There are a lot of neural network implementation available for public and commercial use, but the setting of hyperparameters is often a neglected problem. Choosing the best structure and hyperparameters is the primary challenge in designing a neural network. This article describes a genetic algorithm for automatic selection of hyperparameters and their tuning for increasing the performance of neural networks without human interaction. The optimization algorithm accelerates the discovery of conguration, which is otherwise a time-consuming task. We evaluate the results of optimizations in comparison to naive approach and compare pro and cons of different techniques.
Název v anglickém jazyce
Genetic Algorithm for Automatic tuning of neural network hyperparameters
Popis výsledku anglicky
Articial neural networks affect our everyday life. But every neural network depends on the appropriate training set and setting of internal properties with hyperparameters. Even accurate and complete training set doesnt imply high performance of neural network algorithm. Tuning of hyperparameters is crucial for correct functionality, fast learning and high accuracy of neural networks. The hyperparameter selection relies on manual ne-tuning based on multiple full training trials. There are a lot of neural network implementation available for public and commercial use, but the setting of hyperparameters is often a neglected problem. Choosing the best structure and hyperparameters is the primary challenge in designing a neural network. This article describes a genetic algorithm for automatic selection of hyperparameters and their tuning for increasing the performance of neural networks without human interaction. The optimization algorithm accelerates the discovery of conguration, which is otherwise a time-consuming task. We evaluate the results of optimizations in comparison to naive approach and compare pro and cons of different techniques.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/EF16_013%2F0001797" target="_blank" >EF16_013/0001797: E-infrastruktura CESNET - modernizace</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Autonomous Systems: Sensors, Vehicles, Security, and the Internet of Everything
ISBN
978-1-5106-1798-8
ISSN
0277-786X
e-ISSN
neuvedeno
Počet stran výsledku
7
Strana od-do
—
Název nakladatele
SPIE
Místo vydání
Neuveden
Místo konání akce
Orlando, Florida, United States
Datum konání akce
16. 4. 2018
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000453556800017