Multi-level Anomaly Detection in IoT Networks
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F63839172%3A_____%2F19%3A10133275" target="_blank" >RIV/63839172:_____/19:10133275 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Multi-level Anomaly Detection in IoT Networks
Popis výsledku v původním jazyce
This paper is primarily focused on IoT networks that contain IP devices, such as gateways, sensors,and mobile phones. Our aim is to design scalable monitoring system and its features for IoT gateways, to analyze the behavior of IoT devices, classify them according to trained classes, and to detect anomalies at the network edge. This approach to securing infrastructure brings better visibility and improves threat detection because there is the biggest insight without any obstacles at the network edge. Our goal is to create a system that can notify owners of IoT gateway about suspicious behavior observed even in the encrypted traffic. In our case, anomalous traffic represents some change in the behavior of a device that can be occur after infection by malware or after some configuration changes.
Název v anglickém jazyce
Multi-level Anomaly Detection in IoT Networks
Popis výsledku anglicky
This paper is primarily focused on IoT networks that contain IP devices, such as gateways, sensors,and mobile phones. Our aim is to design scalable monitoring system and its features for IoT gateways, to analyze the behavior of IoT devices, classify them according to trained classes, and to detect anomalies at the network edge. This approach to securing infrastructure brings better visibility and improves threat detection because there is the biggest insight without any obstacles at the network edge. Our goal is to create a system that can notify owners of IoT gateway about suspicious behavior observed even in the encrypted traffic. In our case, anomalous traffic represents some change in the behavior of a device that can be occur after infection by malware or after some configuration changes.
Klasifikace
Druh
O - Ostatní výsledky
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/VI20172020079" target="_blank" >VI20172020079: Zabezpečená brána pro internet věcí (SIoT)</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů