Detection of HTTPS Brute-Force Attacks with Packet-Level Feature Set
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F63839172%3A_____%2F21%3A10133370" target="_blank" >RIV/63839172:_____/21:10133370 - isvavai.cz</a>
Výsledek na webu
<a href="https://ieeexplore.ieee.org/document/9375998" target="_blank" >https://ieeexplore.ieee.org/document/9375998</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/CCWC51732.2021.9375998" target="_blank" >10.1109/CCWC51732.2021.9375998</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Detection of HTTPS Brute-Force Attacks with Packet-Level Feature Set
Popis výsledku v původním jazyce
This paper presents a novel approach to detect brute-force attacks against web services in high-speed networks. The prevalence of brute-force attacks is so high that service providers, such as ISPs or web-hosting providers, cannot depend on their customers' host-based defenses. Moreover, the rising usage of encryption makes it more difficult to detect attacks on the network level. In our research, we created a dataset, which consists of 1.8 million extended IP flows from a backbone network combined with IP flows generated with three popular open-source brute-forcing tools. We identified a distinctive packet-level feature set and trained a machine-learning classifier with a false positive rate of 10^-4 and a true positive rate (the ratio of discovered attacks) of 0.938. The achieved results surpass the state-of-the-art solutions and show that the developed HTTPS brute-force detection algorithm is viable for production deployment.
Název v anglickém jazyce
Detection of HTTPS Brute-Force Attacks with Packet-Level Feature Set
Popis výsledku anglicky
This paper presents a novel approach to detect brute-force attacks against web services in high-speed networks. The prevalence of brute-force attacks is so high that service providers, such as ISPs or web-hosting providers, cannot depend on their customers' host-based defenses. Moreover, the rising usage of encryption makes it more difficult to detect attacks on the network level. In our research, we created a dataset, which consists of 1.8 million extended IP flows from a backbone network combined with IP flows generated with three popular open-source brute-forcing tools. We identified a distinctive packet-level feature set and trained a machine-learning classifier with a false positive rate of 10^-4 and a true positive rate (the ratio of discovered attacks) of 0.938. The achieved results surpass the state-of-the-art solutions and show that the developed HTTPS brute-force detection algorithm is viable for production deployment.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
20202 - Communication engineering and systems
Návaznosti výsledku
Projekt
—
Návaznosti
R - Projekt Ramcoveho programu EK
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
11th Annual Computing and Communication Workshop and Conference (CCWC2021)
ISBN
978-1-66541-490-6
ISSN
—
e-ISSN
—
Počet stran výsledku
9
Strana od-do
114-122
Název nakladatele
IEEE
Místo vydání
Piscataway , USA
Místo konání akce
Las Vegas, Spojené státy americké
Datum konání akce
27. 1. 2021
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000668575500019