Evaluation of passive OS fingerprinting methods using TCP/IP fields
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F63839172%3A_____%2F23%3A10133572" target="_blank" >RIV/63839172:_____/23:10133572 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/68407700:21240/23:00367557
Výsledek na webu
<a href="https://ieeexplore.ieee.org/document/10192974" target="_blank" >https://ieeexplore.ieee.org/document/10192974</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.23919/SpliTech58164.2023.10192974" target="_blank" >10.23919/SpliTech58164.2023.10192974</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Evaluation of passive OS fingerprinting methods using TCP/IP fields
Popis výsledku v původním jazyce
An important part of network management is to keep knowledge about the connected devices. One of the tools that can provide such information in real-time is passive OS fingerprinting, in particular the method based on analyzing values of specific TCP/IP headers. The state-of-the-art approach is to use machine learning to create such OS classifier. In this paper, we focus on the evaluation of this approach from several perspectives. We took two existing public datasets and created a new one from our network and trained machine learning models to classify the 4 most common operation system families based on selected TCP/IP fields. We compare different models, discuss the need to round TTL values to avoid over-fitting, and test the transferability of models trained on data from different networks. Although TCP/IP-related characteristics of individual operating systems should be independent on where the device is located, our experiments show that a model trained in one network performs much worse in another one, making model creation and deployment more difficult in practice. A good solution may be to combine data from multiple networks. A model trained on a combination of all three datasets exhibited the best results on average across the datasets.
Název v anglickém jazyce
Evaluation of passive OS fingerprinting methods using TCP/IP fields
Popis výsledku anglicky
An important part of network management is to keep knowledge about the connected devices. One of the tools that can provide such information in real-time is passive OS fingerprinting, in particular the method based on analyzing values of specific TCP/IP headers. The state-of-the-art approach is to use machine learning to create such OS classifier. In this paper, we focus on the evaluation of this approach from several perspectives. We took two existing public datasets and created a new one from our network and trained machine learning models to classify the 4 most common operation system families based on selected TCP/IP fields. We compare different models, discuss the need to round TTL values to avoid over-fitting, and test the transferability of models trained on data from different networks. Although TCP/IP-related characteristics of individual operating systems should be independent on where the device is located, our experiments show that a model trained in one network performs much worse in another one, making model creation and deployment more difficult in practice. A good solution may be to combine data from multiple networks. A model trained on a combination of all three datasets exhibited the best results on average across the datasets.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/VJ02010024" target="_blank" >VJ02010024: Analýza šifrovaného provozu pomocí síťových toků</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
2023 8th International Conference on Smart and Sustainable Technologies (SpliTech)
ISBN
978-953-290-128-3
ISSN
—
e-ISSN
—
Počet stran výsledku
4
Strana od-do
530-533
Název nakladatele
IEEE
Místo vydání
Neuveden
Místo konání akce
Split/Bol, Croatia
Datum konání akce
20. 6. 2023
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—