Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

NetTiSA: Extended IP flow with time-series features for universal bandwidth-constrained high-speed network traffic classification

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F63839172%3A_____%2F24%3A10133638" target="_blank" >RIV/63839172:_____/24:10133638 - isvavai.cz</a>

  • Nalezeny alternativní kódy

    RIV/68407700:21240/24:00373661

  • Výsledek na webu

    <a href="https://doi.org/10.1016/j.comnet.2023.110147" target="_blank" >https://doi.org/10.1016/j.comnet.2023.110147</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.comnet.2023.110147" target="_blank" >10.1016/j.comnet.2023.110147</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    NetTiSA: Extended IP flow with time-series features for universal bandwidth-constrained high-speed network traffic classification

  • Popis výsledku v původním jazyce

    Network traffic monitoring based on IP Flows is a standard monitoring approach that can be deployed to various network infrastructures, even the large ISP networks connecting millions of people. Since flow records traditionally contain only limited information (addresses, transport ports, and amount of exchanged data), they are also commonly extended by additional features that enable network traffic analysis with high accuracy. These flow extensions are, however, often too large or hard to compute, which then allows only offline analysis or limits their deployment only to smaller-sized networks. This paper proposes a novel extended IP flow called NetTiSA (Network Time Series Analysed) flow, based on analysing the time series of packet sizes. By thoroughly testing 25 different network traffic classification tasks, we show the broad applicability and high usability of NetTiSA flow. For practical deployment, we also consider the sizes of flows extended by NetTiSA features and evaluate the performance impacts of their computation in the flow exporter. The novel features proved to be computationally inexpensive and showed excellent discriminatory performance. The trained machine learning classifiers with proposed features mostly outperformed the state-of-the-art methods. NetTiSA finally bridges the gap and brings universal, small-sized, and computationally inexpensive features for traffic classification that can be scaled up to extensive monitoring infrastructures, bringing the machine learning traffic classification even to 100 Gbps backbone lines.

  • Název v anglickém jazyce

    NetTiSA: Extended IP flow with time-series features for universal bandwidth-constrained high-speed network traffic classification

  • Popis výsledku anglicky

    Network traffic monitoring based on IP Flows is a standard monitoring approach that can be deployed to various network infrastructures, even the large ISP networks connecting millions of people. Since flow records traditionally contain only limited information (addresses, transport ports, and amount of exchanged data), they are also commonly extended by additional features that enable network traffic analysis with high accuracy. These flow extensions are, however, often too large or hard to compute, which then allows only offline analysis or limits their deployment only to smaller-sized networks. This paper proposes a novel extended IP flow called NetTiSA (Network Time Series Analysed) flow, based on analysing the time series of packet sizes. By thoroughly testing 25 different network traffic classification tasks, we show the broad applicability and high usability of NetTiSA flow. For practical deployment, we also consider the sizes of flows extended by NetTiSA features and evaluate the performance impacts of their computation in the flow exporter. The novel features proved to be computationally inexpensive and showed excellent discriminatory performance. The trained machine learning classifiers with proposed features mostly outperformed the state-of-the-art methods. NetTiSA finally bridges the gap and brings universal, small-sized, and computationally inexpensive features for traffic classification that can be scaled up to extensive monitoring infrastructures, bringing the machine learning traffic classification even to 100 Gbps backbone lines.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/VJ02010024" target="_blank" >VJ02010024: Analýza šifrovaného provozu pomocí síťových toků</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2024

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Computer Networks

  • ISSN

    1389-1286

  • e-ISSN

  • Svazek periodika

    240

  • Číslo periodika v rámci svazku

    February 2024

  • Stát vydavatele periodika

    NL - Nizozemsko

  • Počet stran výsledku

    22

  • Strana od-do

  • Kód UT WoS článku

    001157525200001

  • EID výsledku v databázi Scopus

    2-s2.0-85182028058