URL Evaluator: Semi-automatic evaluation of suspicious URLs from honeypots
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F63839172%3A_____%2F24%3A10133688" target="_blank" >RIV/63839172:_____/24:10133688 - isvavai.cz</a>
Výsledek na webu
<a href="https://dl.ifip.org/db/conf/cnsm/cnsm2024/1571071957.pdf" target="_blank" >https://dl.ifip.org/db/conf/cnsm/cnsm2024/1571071957.pdf</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.23919/CNSM62983.2024.10814604" target="_blank" >10.23919/CNSM62983.2024.10814604</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
URL Evaluator: Semi-automatic evaluation of suspicious URLs from honeypots
Popis výsledku v původním jazyce
Botnets often rely on malicious URLs to distribute malware payloads over HTTP. Identifying these URLs is critical for network defense, as it enables the detection or blocking of access from within the network, thereby preventing potential malware infections. A promising approach for uncovering URLs used for malware distribution involves analyzing data from SSH honeypots. However, not every URL observed in a honeypot log is necessarily malicious. In this paper, we present the "URL Evaluator" system, which automates the extraction and analysis of suspicious URLs from SSH honeypot data. It employs a semi-automated evaluation process, which leverages multiple data sources and methods and escalates to human operators only when necessary. Confirmed malicious URLs are then used in a network monitoring system to detect any accesses to such URLs from within the defended network. Any such access is automatically reported to the responsible administrator or security team. Additionaly, the system contributes newly found malicious URLs to a large community blacklist. The paper describes the system architecture, key components, and its operational results.
Název v anglickém jazyce
URL Evaluator: Semi-automatic evaluation of suspicious URLs from honeypots
Popis výsledku anglicky
Botnets often rely on malicious URLs to distribute malware payloads over HTTP. Identifying these URLs is critical for network defense, as it enables the detection or blocking of access from within the network, thereby preventing potential malware infections. A promising approach for uncovering URLs used for malware distribution involves analyzing data from SSH honeypots. However, not every URL observed in a honeypot log is necessarily malicious. In this paper, we present the "URL Evaluator" system, which automates the extraction and analysis of suspicious URLs from SSH honeypot data. It employs a semi-automated evaluation process, which leverages multiple data sources and methods and escalates to human operators only when necessary. Confirmed malicious URLs are then used in a network monitoring system to detect any accesses to such URLs from within the defended network. Any such access is automatically reported to the responsible administrator or security team. Additionaly, the system contributes newly found malicious URLs to a large community blacklist. The paper describes the system architecture, key components, and its operational results.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/LM2023054" target="_blank" >LM2023054: e-Infrastruktura CZ</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
20th International Conference on Network and Service Management
ISBN
978-3-903176-66-9
ISSN
2165-963X
e-ISSN
—
Počet stran výsledku
4
Strana od-do
—
Název nakladatele
IFIP
Místo vydání
Prague, Czech Republic
Místo konání akce
Prague, Czech Republic
Datum konání akce
28. 10. 2024
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
001414325200072