Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Classification of 3-D MRI Brain Data Using Modified Maximum Uncertainty Linear Discriminant Analysis

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F65269705%3A_____%2F10%3A%230001439" target="_blank" >RIV/65269705:_____/10:#0001439 - isvavai.cz</a>

  • Výsledek na webu

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Classification of 3-D MRI Brain Data Using Modified Maximum Uncertainty Linear Discriminant Analysis

  • Popis výsledku v původním jazyce

    Recent studies have demonstrated that diagnostics of schizophrenia based on image data is a difficult task because of extensive overlaps of brain regions distinguishing patients with schizophrenia from healthy controls and also because of the small sample size problem. An algorithm for the automatic classification of first-episode schizophrenia patients and healthy controls based on deformations and gray matter (GM) density images extracted from their MRI intensity data is introduced here. The deformations and GM density images are reduced by principal component analysis, which is here based on the covariance matrix of persons (pPCA). The reduced image data is then classified with the use of modified maximum uncertainty linear discriminant analysis (MLDA), which gives better sensitivity than original MLDA. The classification efficiency of the proposed algorithm is comparable with other state-of-art studies in the schizophrenia research.

  • Název v anglickém jazyce

    Classification of 3-D MRI Brain Data Using Modified Maximum Uncertainty Linear Discriminant Analysis

  • Popis výsledku anglicky

    Recent studies have demonstrated that diagnostics of schizophrenia based on image data is a difficult task because of extensive overlaps of brain regions distinguishing patients with schizophrenia from healthy controls and also because of the small sample size problem. An algorithm for the automatic classification of first-episode schizophrenia patients and healthy controls based on deformations and gray matter (GM) density images extracted from their MRI intensity data is introduced here. The deformations and GM density images are reduced by principal component analysis, which is here based on the covariance matrix of persons (pPCA). The reduced image data is then classified with the use of modified maximum uncertainty linear discriminant analysis (MLDA), which gives better sensitivity than original MLDA. The classification efficiency of the proposed algorithm is comparable with other state-of-art studies in the schizophrenia research.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

    FL - Psychiatrie, sexuologie

  • OECD FORD obor

Návaznosti výsledku

  • Projekt

    Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2010

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    Proceedings of Medical Image Understanding and Analysis 2010

  • ISBN

    978-0-9566150-0-8

  • ISSN

  • e-ISSN

  • Počet stran výsledku

    5

  • Strana od-do

    83-87

  • Název nakladatele

    University of Warwick

  • Místo vydání

    Coventry

  • Místo konání akce

    Warwick

  • Datum konání akce

    1. 1. 2010

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku