EEG Resting-State Large-Scale Brain Network Dynamics Are Related to Depressive Symptoms
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F65269705%3A_____%2F19%3A00071110" target="_blank" >RIV/65269705:_____/19:00071110 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/00216224:14110/19:00110571
Výsledek na webu
<a href="https://www.frontiersin.org/articles/10.3389/fpsyt.2019.00548/full" target="_blank" >https://www.frontiersin.org/articles/10.3389/fpsyt.2019.00548/full</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3389/fpsyt.2019.00548" target="_blank" >10.3389/fpsyt.2019.00548</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
EEG Resting-State Large-Scale Brain Network Dynamics Are Related to Depressive Symptoms
Popis výsledku v původním jazyce
Background: The few previous studies on resting-state electroencephalography (EEG) microstates in depressive patients suggest altered temporal characteristics of microstates compared to those of healthy subjects. We tested whether resting-state microstate temporal characteristics could capture large-scale brain network dynamic activity relevant to depressive symptomatology. Methods: To evaluate a possible relationship between the resting-state large-scale brain network dynamics and depressive symptoms, we performed EEG microstate analysis in 19 patients with moderate to severe depression in bipolar affective disorder, depressive episode, and recurrent depressive disorder and in 19 healthy controls. Results: Microstate analysis revealed six classes of microstates (A-F) in global clustering across all subjects. There were no between-group differences in the temporal characteristics of microstates. In the patient group, higher depressive symptomatology on the Montgomery-angstrom sberg Depression Rating Scale correlated with higher occurrence of microstate A (Spearman's rank correlation, r = 0.70, p < 0.01). Conclusion: Our results suggest that the observed interindividual differences in resting-state EEG microstate parameters could reflect altered large-scale brain network dynamics relevant to depressive symptomatology during depressive episodes. Replication in larger cohort is needed to assess the utility of the microstate analysis approach in an objective depression assessment at the individual level.
Název v anglickém jazyce
EEG Resting-State Large-Scale Brain Network Dynamics Are Related to Depressive Symptoms
Popis výsledku anglicky
Background: The few previous studies on resting-state electroencephalography (EEG) microstates in depressive patients suggest altered temporal characteristics of microstates compared to those of healthy subjects. We tested whether resting-state microstate temporal characteristics could capture large-scale brain network dynamic activity relevant to depressive symptomatology. Methods: To evaluate a possible relationship between the resting-state large-scale brain network dynamics and depressive symptoms, we performed EEG microstate analysis in 19 patients with moderate to severe depression in bipolar affective disorder, depressive episode, and recurrent depressive disorder and in 19 healthy controls. Results: Microstate analysis revealed six classes of microstates (A-F) in global clustering across all subjects. There were no between-group differences in the temporal characteristics of microstates. In the patient group, higher depressive symptomatology on the Montgomery-angstrom sberg Depression Rating Scale correlated with higher occurrence of microstate A (Spearman's rank correlation, r = 0.70, p < 0.01). Conclusion: Our results suggest that the observed interindividual differences in resting-state EEG microstate parameters could reflect altered large-scale brain network dynamics relevant to depressive symptomatology during depressive episodes. Replication in larger cohort is needed to assess the utility of the microstate analysis approach in an objective depression assessment at the individual level.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
30215 - Psychiatry
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Frontiers in Psychiatry
ISSN
1664-0640
e-ISSN
—
Svazek periodika
10
Číslo periodika v rámci svazku
AUG 9
Stát vydavatele periodika
CH - Švýcarská konfederace
Počet stran výsledku
10
Strana od-do
548
Kód UT WoS článku
000480255000001
EID výsledku v databázi Scopus
—