A temporally and spatially explicit, data-driven estimation of airborne ragweed pollen concentrations across Europe
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F65269705%3A_____%2F23%3A00078418" target="_blank" >RIV/65269705:_____/23:00078418 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/00216224:14110/23:00133787
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S0048969723057224?pes=vor" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0048969723057224?pes=vor</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.scitotenv.2023.167095" target="_blank" >10.1016/j.scitotenv.2023.167095</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
A temporally and spatially explicit, data-driven estimation of airborne ragweed pollen concentrations across Europe
Popis výsledku v původním jazyce
Ongoing and future climate change driven expansion of aeroallergen-producing plant species comprise a major human health problem across Europe and elsewhere. There is an urgent need to produce accurate, temporally dynamic maps at the continental level, especially in the context of climate uncertainty. This study aimed to restore missing daily ragweed pollen data sets for Europe, to produce phenological maps of ragweed pollen, resulting in the most complete and detailed high-resolution ragweed pollen concentration maps to date. To achieve this, we have developed two statistical procedures, a Gaussian method (GM) and deep learning (DL) for restoring missing daily ragweed pollen data sets, based on the plant's reproductive and growth (phenological, pollen production and frost-related) characteristics. DL model performances were consistently better for estimating seasonal pollen integrals than those of the GM approach. These are the first published modelled maps using altitude correction and flowering phenology to recover missing pollen information. We created a web page (http://euragweedpollen.gmf.u-szeged.hu/), including daily ragweed pollen concentration data sets of the stations examined and their restored daily data, allowing one to upload newly measured or recovered daily data. Generation of these maps provides a means to track pollen impacts in the context of climatic shifts, identify geographical regions with high pollen exposure, determine areas of future vulnerability, apply spatially-explicit mitigation measures and prioritize management interventions.
Název v anglickém jazyce
A temporally and spatially explicit, data-driven estimation of airborne ragweed pollen concentrations across Europe
Popis výsledku anglicky
Ongoing and future climate change driven expansion of aeroallergen-producing plant species comprise a major human health problem across Europe and elsewhere. There is an urgent need to produce accurate, temporally dynamic maps at the continental level, especially in the context of climate uncertainty. This study aimed to restore missing daily ragweed pollen data sets for Europe, to produce phenological maps of ragweed pollen, resulting in the most complete and detailed high-resolution ragweed pollen concentration maps to date. To achieve this, we have developed two statistical procedures, a Gaussian method (GM) and deep learning (DL) for restoring missing daily ragweed pollen data sets, based on the plant's reproductive and growth (phenological, pollen production and frost-related) characteristics. DL model performances were consistently better for estimating seasonal pollen integrals than those of the GM approach. These are the first published modelled maps using altitude correction and flowering phenology to recover missing pollen information. We created a web page (http://euragweedpollen.gmf.u-szeged.hu/), including daily ragweed pollen concentration data sets of the stations examined and their restored daily data, allowing one to upload newly measured or recovered daily data. Generation of these maps provides a means to track pollen impacts in the context of climatic shifts, identify geographical regions with high pollen exposure, determine areas of future vulnerability, apply spatially-explicit mitigation measures and prioritize management interventions.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
30200 - Clinical medicine
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Science of the Total Environment
ISSN
0048-9697
e-ISSN
1879-1026
Svazek periodika
905
Číslo periodika v rámci svazku
DEC 2023
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
18
Strana od-do
167095
Kód UT WoS článku
001160018800001
EID výsledku v databázi Scopus
2-s2.0-85173022583