Consistent trajectories of rhinitis control and treatment in 16,177 weeks: The MASK-air® longitudinal study
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F65269705%3A_____%2F23%3A00078424" target="_blank" >RIV/65269705:_____/23:00078424 - isvavai.cz</a>
Výsledek na webu
<a href="https://onlinelibrary.wiley.com/doi/10.1111/all.15574" target="_blank" >https://onlinelibrary.wiley.com/doi/10.1111/all.15574</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1111/all.15574" target="_blank" >10.1111/all.15574</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Consistent trajectories of rhinitis control and treatment in 16,177 weeks: The MASK-air® longitudinal study
Popis výsledku v původním jazyce
Introduction: Data from mHealth apps can provide valuable information on rhinitis control and treatment patterns. However, in MASK-air (R), these data have only been analyzed cross-sectionally, without considering the changes of symptoms over time. We analyzed data from MASK-air (R) longitudinally, clustering weeks according to reported rhinitis symptoms. Methods: We analyzed MASK-air (R) data, assessing the weeks for which patients had answered a rhinitis daily questionnaire on all 7days. We firstly used k-means clustering algorithms for longitudinal data to define clusters of weeks according to the trajectories of reported daily rhinitis symptoms. Clustering was applied separately for weeks when medication was reported or not. We compared obtained clusters on symptoms and rhinitis medication patterns. We then used the latent class mixture model to assess the robustness of results. Results: We analyzed 113,239 days (16,177 complete weeks) from 2590 patients (mean age +/- SD = 39.1 +/- 13.7 years). The first clustering algorithm identified ten clusters among weeks with medication use: seven with low variability in rhinitis control during the week and three with highly-variable control. Clusters with poorly-controlled rhinitis displayed a higher frequency of rhinitis co-medication, a more frequent change of medication schemes and more pronounced seasonal patterns. Six clusters were identified in weeks when no rhinitis medication was used, displaying similar control patterns. The second clustering method provided similar results. Moreover, patients displayed consistent levels of rhinitis control, reporting several weeks with similar levels of control. Conclusions: We identified 16 patterns of weekly rhinitis control. Co-medication and medication change schemes were common in uncontrolled weeks, reinforcing the hypothesis that patients treat themselves according to their symptoms. [GRAPHICS] .
Název v anglickém jazyce
Consistent trajectories of rhinitis control and treatment in 16,177 weeks: The MASK-air® longitudinal study
Popis výsledku anglicky
Introduction: Data from mHealth apps can provide valuable information on rhinitis control and treatment patterns. However, in MASK-air (R), these data have only been analyzed cross-sectionally, without considering the changes of symptoms over time. We analyzed data from MASK-air (R) longitudinally, clustering weeks according to reported rhinitis symptoms. Methods: We analyzed MASK-air (R) data, assessing the weeks for which patients had answered a rhinitis daily questionnaire on all 7days. We firstly used k-means clustering algorithms for longitudinal data to define clusters of weeks according to the trajectories of reported daily rhinitis symptoms. Clustering was applied separately for weeks when medication was reported or not. We compared obtained clusters on symptoms and rhinitis medication patterns. We then used the latent class mixture model to assess the robustness of results. Results: We analyzed 113,239 days (16,177 complete weeks) from 2590 patients (mean age +/- SD = 39.1 +/- 13.7 years). The first clustering algorithm identified ten clusters among weeks with medication use: seven with low variability in rhinitis control during the week and three with highly-variable control. Clusters with poorly-controlled rhinitis displayed a higher frequency of rhinitis co-medication, a more frequent change of medication schemes and more pronounced seasonal patterns. Six clusters were identified in weeks when no rhinitis medication was used, displaying similar control patterns. The second clustering method provided similar results. Moreover, patients displayed consistent levels of rhinitis control, reporting several weeks with similar levels of control. Conclusions: We identified 16 patterns of weekly rhinitis control. Co-medication and medication change schemes were common in uncontrolled weeks, reinforcing the hypothesis that patients treat themselves according to their symptoms. [GRAPHICS] .
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
30225 - Allergy
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Allergy
ISSN
0105-4538
e-ISSN
1398-9995
Svazek periodika
78
Číslo periodika v rámci svazku
4
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
16
Strana od-do
968-983
Kód UT WoS článku
000898446700001
EID výsledku v databázi Scopus
2-s2.0-85143420123