Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Consistent trajectories of rhinitis control and treatment in 16,177 weeks: The MASK-air® longitudinal study

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F65269705%3A_____%2F23%3A00078424" target="_blank" >RIV/65269705:_____/23:00078424 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://onlinelibrary.wiley.com/doi/10.1111/all.15574" target="_blank" >https://onlinelibrary.wiley.com/doi/10.1111/all.15574</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1111/all.15574" target="_blank" >10.1111/all.15574</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Consistent trajectories of rhinitis control and treatment in 16,177 weeks: The MASK-air® longitudinal study

  • Popis výsledku v původním jazyce

    Introduction: Data from mHealth apps can provide valuable information on rhinitis control and treatment patterns. However, in MASK-air (R), these data have only been analyzed cross-sectionally, without considering the changes of symptoms over time. We analyzed data from MASK-air (R) longitudinally, clustering weeks according to reported rhinitis symptoms. Methods: We analyzed MASK-air (R) data, assessing the weeks for which patients had answered a rhinitis daily questionnaire on all 7days. We firstly used k-means clustering algorithms for longitudinal data to define clusters of weeks according to the trajectories of reported daily rhinitis symptoms. Clustering was applied separately for weeks when medication was reported or not. We compared obtained clusters on symptoms and rhinitis medication patterns. We then used the latent class mixture model to assess the robustness of results. Results: We analyzed 113,239 days (16,177 complete weeks) from 2590 patients (mean age +/- SD = 39.1 +/- 13.7 years). The first clustering algorithm identified ten clusters among weeks with medication use: seven with low variability in rhinitis control during the week and three with highly-variable control. Clusters with poorly-controlled rhinitis displayed a higher frequency of rhinitis co-medication, a more frequent change of medication schemes and more pronounced seasonal patterns. Six clusters were identified in weeks when no rhinitis medication was used, displaying similar control patterns. The second clustering method provided similar results. Moreover, patients displayed consistent levels of rhinitis control, reporting several weeks with similar levels of control. Conclusions: We identified 16 patterns of weekly rhinitis control. Co-medication and medication change schemes were common in uncontrolled weeks, reinforcing the hypothesis that patients treat themselves according to their symptoms. [GRAPHICS] .

  • Název v anglickém jazyce

    Consistent trajectories of rhinitis control and treatment in 16,177 weeks: The MASK-air® longitudinal study

  • Popis výsledku anglicky

    Introduction: Data from mHealth apps can provide valuable information on rhinitis control and treatment patterns. However, in MASK-air (R), these data have only been analyzed cross-sectionally, without considering the changes of symptoms over time. We analyzed data from MASK-air (R) longitudinally, clustering weeks according to reported rhinitis symptoms. Methods: We analyzed MASK-air (R) data, assessing the weeks for which patients had answered a rhinitis daily questionnaire on all 7days. We firstly used k-means clustering algorithms for longitudinal data to define clusters of weeks according to the trajectories of reported daily rhinitis symptoms. Clustering was applied separately for weeks when medication was reported or not. We compared obtained clusters on symptoms and rhinitis medication patterns. We then used the latent class mixture model to assess the robustness of results. Results: We analyzed 113,239 days (16,177 complete weeks) from 2590 patients (mean age +/- SD = 39.1 +/- 13.7 years). The first clustering algorithm identified ten clusters among weeks with medication use: seven with low variability in rhinitis control during the week and three with highly-variable control. Clusters with poorly-controlled rhinitis displayed a higher frequency of rhinitis co-medication, a more frequent change of medication schemes and more pronounced seasonal patterns. Six clusters were identified in weeks when no rhinitis medication was used, displaying similar control patterns. The second clustering method provided similar results. Moreover, patients displayed consistent levels of rhinitis control, reporting several weeks with similar levels of control. Conclusions: We identified 16 patterns of weekly rhinitis control. Co-medication and medication change schemes were common in uncontrolled weeks, reinforcing the hypothesis that patients treat themselves according to their symptoms. [GRAPHICS] .

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    30225 - Allergy

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2023

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Allergy

  • ISSN

    0105-4538

  • e-ISSN

    1398-9995

  • Svazek periodika

    78

  • Číslo periodika v rámci svazku

    4

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    16

  • Strana od-do

    968-983

  • Kód UT WoS článku

    000898446700001

  • EID výsledku v databázi Scopus

    2-s2.0-85143420123