Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Endometrial Pipelle Biopsy Computer-Aided Diagnosis: A Feasibility Study

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F65269705%3A_____%2F24%3A00079488" target="_blank" >RIV/65269705:_____/24:00079488 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://www.sciencedirect.com/science/article/pii/S0893395223003228?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0893395223003228?via%3Dihub</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.modpat.2023.100417" target="_blank" >10.1016/j.modpat.2023.100417</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Endometrial Pipelle Biopsy Computer-Aided Diagnosis: A Feasibility Study

  • Popis výsledku v původním jazyce

    Endometrial biopsies are important in the diagnostic workup of women who present with abnormal uterine bleeding or hereditary risk of endometrial cancer. In general, approximately 10% of all endometrial biopsies demonstrate endometrial (pre)malignancy that requires specific treatment. As the diagnostic evaluation of mostly benign cases results in a substantial workload for pathologists, artificial intelligence (AI)-assisted preselection of biopsies could optimize the workflow. This study aimed to assess the feasibility of AI-assisted diagnosis for endometrial biopsies (endometrial Pipelle biopsy computer-aided diagnosis), trained on daily-practice whole-slide images instead of highly selected images. Endometrial biopsies were classified into 6 clinically relevant categories defined as follows: nonrepresentative, normal, nonneoplastic, hyperplasia without atypia, hyperplasia with atypia, and malignant. The agreement among 15 pathologists, within these classifications, was evaluated in 91 endometrial biopsies. Next, an algorithm (trained on a total of 2819 endometrial biopsies) rated the same 91 cases, and we compared its performance using the pathologist&apos;s classification as the reference standard. The interrater reliability among pathologists was moderate with a mean Cohen&apos;s kappa of 0.51, whereas for a binary classification into benign vs (pre)malignant, the agreement was substantial with a mean Cohen&apos;s kappa of 0.66. The AI algorithm performed slightly worse for the 6 categories with a moderate Cohen&apos;s kappa of 0.43 but was comparable for the binary classification with a substantial Cohen&apos;s kappa of 0.65. AI-assisted diagnosis of endometrial biopsies was demonstrated to be feasible in discriminating between benign and (pre)malignant endometrial tissues, even when trained on unselected cases. Endometrial premalignancies remain challenging for both pathologists and AI algorithms. Future steps to improve reliability of the diagnosis are

  • Název v anglickém jazyce

    Endometrial Pipelle Biopsy Computer-Aided Diagnosis: A Feasibility Study

  • Popis výsledku anglicky

    Endometrial biopsies are important in the diagnostic workup of women who present with abnormal uterine bleeding or hereditary risk of endometrial cancer. In general, approximately 10% of all endometrial biopsies demonstrate endometrial (pre)malignancy that requires specific treatment. As the diagnostic evaluation of mostly benign cases results in a substantial workload for pathologists, artificial intelligence (AI)-assisted preselection of biopsies could optimize the workflow. This study aimed to assess the feasibility of AI-assisted diagnosis for endometrial biopsies (endometrial Pipelle biopsy computer-aided diagnosis), trained on daily-practice whole-slide images instead of highly selected images. Endometrial biopsies were classified into 6 clinically relevant categories defined as follows: nonrepresentative, normal, nonneoplastic, hyperplasia without atypia, hyperplasia with atypia, and malignant. The agreement among 15 pathologists, within these classifications, was evaluated in 91 endometrial biopsies. Next, an algorithm (trained on a total of 2819 endometrial biopsies) rated the same 91 cases, and we compared its performance using the pathologist&apos;s classification as the reference standard. The interrater reliability among pathologists was moderate with a mean Cohen&apos;s kappa of 0.51, whereas for a binary classification into benign vs (pre)malignant, the agreement was substantial with a mean Cohen&apos;s kappa of 0.66. The AI algorithm performed slightly worse for the 6 categories with a moderate Cohen&apos;s kappa of 0.43 but was comparable for the binary classification with a substantial Cohen&apos;s kappa of 0.65. AI-assisted diagnosis of endometrial biopsies was demonstrated to be feasible in discriminating between benign and (pre)malignant endometrial tissues, even when trained on unselected cases. Endometrial premalignancies remain challenging for both pathologists and AI algorithms. Future steps to improve reliability of the diagnosis are

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    30109 - Pathology

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2024

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Modern Pathology

  • ISSN

    0893-3952

  • e-ISSN

    1530-0285

  • Svazek periodika

    37

  • Číslo periodika v rámci svazku

    2

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    9

  • Strana od-do

    100417

  • Kód UT WoS článku

    001163090800001

  • EID výsledku v databázi Scopus

    2-s2.0-85182355394