Effect of spatial sampling from European flux towers for estimating carbon and water fluxes with artificial neural networks
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67179843%3A_____%2F15%3A00451409" target="_blank" >RIV/67179843:_____/15:00451409 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1002/2015JG002997" target="_blank" >http://dx.doi.org/10.1002/2015JG002997</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1002/2015JG002997" target="_blank" >10.1002/2015JG002997</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Effect of spatial sampling from European flux towers for estimating carbon and water fluxes with artificial neural networks
Popis výsledku v původním jazyce
Empirical modeling approaches are frequently used to upscale local eddy covariance observations of carbon, water, and energy fluxes to regional and global scales. The predictive capacity of such models largely depends on the data used for parameterization and identification of input-output relationships, while prediction for conditions outside the training domain is generally uncertain. In this work, artificial neural networks (ANNs) were used for the prediction of gross primary production (GPP) and latent heat flux (LE) on local and European scales with the aim to assess the portion of uncertainties in extrapolation due to sample selection. ANNs were found to be a useful tool for GPP and LE prediction, in particular for extrapolation in time (mean absolute error MAE for GPP between 0.53 and 1.56?gC?m2?d1). Extrapolation in space in similar climatic and vegetation conditions also gave good results (GPP MAE 0.7?1.41?gC?m2?d1), while extrapolation in areas with different seasonal cycles
Název v anglickém jazyce
Effect of spatial sampling from European flux towers for estimating carbon and water fluxes with artificial neural networks
Popis výsledku anglicky
Empirical modeling approaches are frequently used to upscale local eddy covariance observations of carbon, water, and energy fluxes to regional and global scales. The predictive capacity of such models largely depends on the data used for parameterization and identification of input-output relationships, while prediction for conditions outside the training domain is generally uncertain. In this work, artificial neural networks (ANNs) were used for the prediction of gross primary production (GPP) and latent heat flux (LE) on local and European scales with the aim to assess the portion of uncertainties in extrapolation due to sample selection. ANNs were found to be a useful tool for GPP and LE prediction, in particular for extrapolation in time (mean absolute error MAE for GPP between 0.53 and 1.56?gC?m2?d1). Extrapolation in space in similar climatic and vegetation conditions also gave good results (GPP MAE 0.7?1.41?gC?m2?d1), while extrapolation in areas with different seasonal cycles
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
EH - Ekologie – společenstva
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2015
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Geophysical Research : Biogeosciences
ISSN
2169-8953
e-ISSN
—
Svazek periodika
120
Číslo periodika v rámci svazku
10
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
17
Strana od-do
1941-1957
Kód UT WoS článku
000368730300005
EID výsledku v databázi Scopus
—