Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Reliability of regional crop yield predictions in the Czech Republic based on remotely sensed data

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67179843%3A_____%2F15%3A00456518" target="_blank" >RIV/67179843:_____/15:00456518 - isvavai.cz</a>

  • Nalezeny alternativní kódy

    RIV/62156489:43210/15:43907965 RIV/00216224:14310/15:00114967

  • Výsledek na webu

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Reliability of regional crop yield predictions in the Czech Republic based on remotely sensed data

  • Popis výsledku v původním jazyce

    Vegetation indices sensed by satellite optical sensors are valuable tools for assessing vegetation conditions including field crops. The aim of this study was to assess the reliability of regional yield predictions based on the use of the Normalized Difference Vegetation Index and the Enhanced Vegetation Index derived from the Moderate Resolution Imaging Spectroradiometer aboard the Terra satellite. Data available from the year 2000 were analysed and tested for seasonal yield predictions within selected districts of the Czech Republic. In particular, yields of spring barley, winter wheat, and oilseed winter rape during 2000–2014 were assessed. Observed yields from 14 districts were collected and thus 210 examples (15 years within 14 districts) were included. Selected districts differ considerably in soil fertility and terrain configuration and represent a transect across various agroclimatic conditions (from warm/dry to relatively cool/wet regions). Two approaches were tested: 1) using 16-day temporal composites of remotely sensed data provided by the United States Geological Survey, and 2) using daily remotely sensed data in combination with an originally developed smoothing method. Yields were predicted based on established regression models using remotely sensed data as an independent parameter. In addition to other findings, the impact of severe drought episodes within vegetation was identified and yield reductions at a district level were predicted. As a result, those periods with the best relationship between remotely sensed data and yields were identified. The impact of drought conditions as well as normal or above-normal yields of the tested field crops were predicted using the proposed method within the study region up to 30 days prior to harvest.

  • Název v anglickém jazyce

    Reliability of regional crop yield predictions in the Czech Republic based on remotely sensed data

  • Popis výsledku anglicky

    Vegetation indices sensed by satellite optical sensors are valuable tools for assessing vegetation conditions including field crops. The aim of this study was to assess the reliability of regional yield predictions based on the use of the Normalized Difference Vegetation Index and the Enhanced Vegetation Index derived from the Moderate Resolution Imaging Spectroradiometer aboard the Terra satellite. Data available from the year 2000 were analysed and tested for seasonal yield predictions within selected districts of the Czech Republic. In particular, yields of spring barley, winter wheat, and oilseed winter rape during 2000–2014 were assessed. Observed yields from 14 districts were collected and thus 210 examples (15 years within 14 districts) were included. Selected districts differ considerably in soil fertility and terrain configuration and represent a transect across various agroclimatic conditions (from warm/dry to relatively cool/wet regions). Two approaches were tested: 1) using 16-day temporal composites of remotely sensed data provided by the United States Geological Survey, and 2) using daily remotely sensed data in combination with an originally developed smoothing method. Yields were predicted based on established regression models using remotely sensed data as an independent parameter. In addition to other findings, the impact of severe drought episodes within vegetation was identified and yield reductions at a district level were predicted. As a result, those periods with the best relationship between remotely sensed data and yields were identified. The impact of drought conditions as well as normal or above-normal yields of the tested field crops were predicted using the proposed method within the study region up to 30 days prior to harvest.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

    GC - Pěstování rostlin, osevní postupy

  • OECD FORD obor

Návaznosti výsledku

  • Projekt

    Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2015

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    Global Change: A Complex Challenge : Conference Proceedings

  • ISBN

    978-80-87902-10-3

  • ISSN

  • e-ISSN

  • Počet stran výsledku

    4

  • Strana od-do

    46-49

  • Název nakladatele

    Global Change Research Centre, The Czech Academy of Sciences, v. v. i.

  • Místo vydání

    Brno

  • Místo konání akce

    Brno

  • Datum konání akce

    23. 3. 2015

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku

    000381161600010